X-ray Free Electron Laser Part-2 Photon Beamline and Experiments

XFEL Utilization Division, JASRI Kensuke Tono

Contents

- 1. XFEL sciences
- 2. Photon beam properties
- 3. Photon beamline
- 4. Experimental stations
- 5. Experiments at SACLA

Contents

1. XFEL sciences

2. Photon beam properties

- 3. Photon beamline
- 4. Experimental stations
- 5. Experiments at SACLA

XFEL properties and sciences

- Short pulse (<10 fs)
- High peak power (>30 GW)
- Coherent

Ultrafast observation beyond the speed of atomic motion

- Beyond static image
 - Imaging functions (motion pictures of chemical reaction, phase transition, etc.)
- Beyond statistical image
 - Imaging fluctuations, rare events

Ultrahigh intensity opens new regime of X-ray-matter interactions

• Beyond linear response

(Image from Wikipedia)

Ultrafast observation "See before destruction"

Single-shot imaging

- 1. See before damaged
- 2. New shots on new samples
- 3. Ensemble of 3D orientations
- 4. Time resolved (~10fs): pump-probe imaging (conformational change, reaction process?)

Images from H.Chapman, *Science* ('07)

First demonstration at FLASH

Chapman et al., Nature Physics 2, 839 (2006)

Femtosecond snapshot of a *live* cell

ARTICLE
Received 17 Jul 2013 | Accepted 2 Dec 2013 | Published xx xxx 2013
DOI: 10.1038/ncomms4052

Imaging live cell in micro-liquid enclosure by X-ray laser diffraction

Kimura et al., Nature Communications 5, 3052 (2013).

OPEN

High intensity application

K. Tamasaku et al, PRL Vol.111 (2013)

 $1 \,\mu m$ focusing

Emission from double core hole atoms

- 100 uJ/10 fs = 10 GW (after 1-μm KB)
- Focusing size: ~1x1 μm²
- 10 GW/(1 μm)²~ 10¹⁸ W/cm²

Contents

- 1. XFEL sciences
- 2. Photon beam properties
- 3. Photon beamline
- 4. Experimental stations
- 5. Experiments at SACLA

Properties of **SASE** XFEL beam

Low emittance & short pulse

- Source size ~30 μm@10 keV
- Divergence ~2 µrad@10 keV
- Bandwidth ~5x10⁻³
- Pulse duration <10 fs

Coherent

- Transverse only
- Multimode in longitudinal

High intensity

- Pulse energy ~0.5 mJ @10 keV (~3x10¹¹ photons)
- Peak power >50 GW@10 keV

Shot-by-shot fluctuation

Coherent (transverse only)

~80% of the total power is in the dominant mode (TEM₀₀)

Multimode

Spectrum of single XFEL pulse consists of thousands of spikes due to multi optical modes.

Y. Inubushi *et al., Phys. Rev. Lett.* **109**, 144801 (2012)

Spectra at different pulse durations

Shot-by-shot fluctuation

Intensity/position

Spectrum

Photon-beam parameters and experimental data should be collected in a shot-by-shot manner.

Contents

1. XFEL sciences

2. Photon beam properties

- 3. Photon beamline
- 4. Experimental stations
- 5. Experiments at SACLA

Design concept

- Main optics & diagnostics are centralized in Optics Hutch
 - -> Transport & online diagnostics of a photon beam with low emittance, short pulse, and high coherence.
 - -> Fine electron-beam tuning with X-ray optics & diagnostics.
- Experimental stations provide only basic infrastructure (e.g., optical laser, focusing system)
 -> Enough space for various experimental instruments

Beamline optics

Transport XFEL beam & filter out unnecessary lights

- Double plane mirrors (2 sets): Low-pass filter (Bandwidth of output beam ~5x10⁻³)
- Double crystal monochromator (DCM, Si 111): Band-pas filter (~1x10⁻⁴)

Optical elements for XFEL

XFEL features	Demands	Damage on a mirror material
Short pulse (<10 fs)		(a) (b)
High peak power (>30 GW)	Damage free	40 μm ↔ 4 μm
Coherent	Speckle free	<u>10 µm</u> <u>10 µm</u>
	7	Koyama et al., Opt. Exp. 21 (2013)
Typical Be window Speckle-free Be window Elastic Emission Machining		
Goto et al., Proc. of SPIE 6705 (200	07) Mimura	et al., Rev. Sci. Instrum. 79 , (2008)

On-line photon diagnostics: Beam monitor (intensity/position)

Alkire et al., J. Syn. Rad. 7, 61 (2000).

Shot-by-shot measurement of pulse energy

Wavelength (photon-energy) monitor

Wavelengths (λ) are calculated from positions of Debye-Scherrer rings on MPCCD.

 $2d\sin\theta = n\lambda$

Inubushi -san

Shot-by-shot measurement

9.90

10.00

Photon energy (keV)

10.10

Contents

- 1. XFEL sciences
- 2. Photon beam properties
- 3. Photon beamline
- 4. Experimental stations
- 5. Experiments at SACLA

Single-shot measurement is mandatory.

• Even a single pulse destroys a sample.

Neutze et al., Nature 406, 752 (2000)

• Pulse-by-pulse fluctuation of XFEL pulses.

Difficult to repeat measurement in the same condition.

Instrumentation for single-shot

measurement

- High photon flux
 - Focusing
- Fast sample exchange
 - > Injectors
 - Fixed targets with a fast scanning system
- Fast & sensitive X-ray detection
 - High performance detectors
 - ✓ High sensitivity, high frame rate, high dynamic range, large area, ...
- Fast & reliable data acquisition (DAQ)
 - High performance computers
 - High speed network
 - Large storage system

Focusing

1-um focusing mirrors

1.1 First derivative 0.9 I/I_0 0.7 0.5 0.3 0.1 -0.1 ¹⁰Wire position³⁰/a.u.40 50 0

Yumoto et al Nature Photon. 7, 43 (2013)

nature photonics

LETTERS PUBLISHED ONLINE: 16 DECEMBER 2012 | DOI: 10.1038/NPHOTON.2012.30

Focusing of X-ray free-electron laser pulses with reflective optics

Hirokatsu Yumoto1*, Hidekazu Mimura², Takahisa Koyama¹, Satoshi Matsuyama^{3,4}, Kensuke Tono¹, Tadashi Togashi¹, Yuichi Inubushi⁵, Takahiro Sato⁵, Takashi Tanaka⁵, Takashi Kimura⁶, Hikaru Yokoyama³, Jangwoo Kim³, Yasuhisa Sano³, Yousuke Hachisu⁷, Makina Yabashi⁵, Haruhiko Ohashi^{1,5}, Hitoshi Ohmori⁷, Tetsuya Ishikawa⁵ and Kazuto Yamauchi^{3,4,8}

X-ray free-electron lasers^{1,2} produce intense femtosecond pulses that have applications in exploring new frontiers in been developed to focus X-rays. Of these options, total reflective science. The unique characteristics of X-ray free-electron

To date, refractive¹⁰, diffractive^{3,11} and reflective optics¹² have optics in the Kirkpatrick-Bae

Koyama et al, OE 21, 15382 (2013)

26

Detector

- Multi-port CCD (MPCCD)
 - High sensitivity
 - Low noise
 - (single-photon detection capability)
 - Fast (60 fps)
 - − Large area(□100 mm)

Octal Sensor Detector (100 x 100 mm) 2048 x 2048 pixels Kameshima (JASRI), Hatsui et al., Rev. Sci. Instrum. 85 (2014)

Specification		
Frame rate	≥60 fps	
Pixel size	50 µm	
Noise	300e ⁻	
Q.E.	~70 % @ 6 keV	
	~20 % @ 12 keV	
Dynamic range	14 bits	
System noise	< 0.2 ph.@ 6 keV	
Full well	~ 3000 ph. @6keV	
	~ 1500 ph. @12keV	
	۷/	

Data acquisition (DAQ) Joti, Kameshima (JASRI) Hatsui (RIKEN) et al.

Contents

- 1. XFEL sciences
- 2. Photon beam properties
- 3. Photon beamline
- 4. Experimental stations
- 5. Experiments at SACLA
 - Coherent diffraction imaging (CDI)
 - Femtosecond protein crystallography
 - Time-resolved X-ray absorption spectroscopy (XAS)
 - Nonlinear X-ray optics

User experiments in FY2012&2013

XFEL as a probe, as a trigger

- Observation in the "see-before-destruction" scheme.
 - Coherent diffraction imaging (CDI)
 - Femtosecond protein crystallography
- Observation of ultrafast phenomena
 - Time-resolved measurements
- Light-matter interaction under intense X-ray irradiation: XFEL as a trigger of novel optical phenomena
 - Nonlinear X-ray optics, X-ray amplification

"See before destruction" (1) CDI for *single-particle* structure analysis

Typical setup for CDI

Kameshima et al., Rev. Sci. Instrum **85**, 033110 (2014) ³³

CDI of nanomaterials

Takahashi et al., Nano Lett. 13, 6028 (2013)

Resolution \sim 7 nm

金/銀ナノボックスの電子密度投影像

CDI of live cell

Kimura et al., Nature Communications 5, 3052 (2013).

And more

"Macromolecular structures probed by combining single-shot free-electron laser diffraction with synchrotron coherent Xray imaging," M. Gallagher-Jones et al., *Nature Commun.* (2014)

"Single-shot three-dimensional structure determination of nanocrystals with femtosecond X-ray free-electron laser pulses," R. Xu et al., *Nature Commun.* (2014) "See before destruction" (2) Femtosecond protein crystallography

- Damage free
 - Room temperature measurement
- Dynamics
 - Pump-probe capability
- Two major methods
 - For large, high-quality crystals
 - For small crystals

Femtosecond crystallography NATURE METHODS | VOL.11 NO.7 | JULY 2014 | 735

а

Determination of damagefree crystal structure of an X-ray-sensitive protein using an XFEL

Kunio Hirata^{1,2,9}, Kyoko Shinzawa-Itoh^{3,9}, Naomine Yano^{2,3}, Shuhei Takemura³, Koji Kato^{3,8}, Miki Hatanaka³, Kazumasa Muramoto³, Takako Kawahara³, Tomitake Tsukihara²⁻⁴, Eiki Yamashita⁴, Kensuke Tono⁵, Go Ueno¹, Takaaki Hikima¹, Hironori Murakami¹, Yuichi Inubushi¹, Makina Yabashi¹, Tetsuya Ishikawa¹, Masaki Yamamoto¹, Takashi Ogura⁶, Hiroshi Sugimoto¹, Jian-Ren Shen⁷, Shinya Yoshikawa³ & Hideo Ago¹

Damage-free structure

Hirata et al., Nature Methods 7, 735 (2014).

Serial femtosecond crystallography (SFX)

DAPHNIS (<u>D</u>iverse <u>Application P</u>latform for <u>H</u>ard x-ray diffractio<u>N In S</u>ACLA)

Versatile platform for SFX (diffraction/scattering)

- Components are separated to be handled easily.
- Operated under atmospheric pressure (He atmosphere)
- Flexible system adaptable to various sample injectors
- Extensible to pump-probe measurement

Also applicable to diffraction & scattering experiments for variety of solution and solid samples with P&P capability.

solution scattering

powder diffraction

Fluid injectors

Continuous beam

High-viscosity sample

Droplets

Flow rate = \sim 0.4 mL/min

~0.5 μL/min

~0.1 μL/min

Proteins : ~100 mg

Proteins : ~0. 1 mg

Proteins: <0.1 mg

Single-shot diffraction patterns of Lysozyme

Lysozyme (Average crystal size: $\sim 5 \ \mu m$)

Electron density map

Resolution <2 Å

Statistics

Shot number: 70,000 Number of Images with diffraction spots : 21723 (Hit rate : 31%) Indexable images: 13,912 (20%) Measurement time: 1 hour (20 Hz) Time-resolved measurements for probing ultrafast phenomena

- Time-resolved X-ray absorption/emission spectroscopy (XAS/XES)
- Time-resolved X-ray diffraction/scattering
- Time-resolved photoelectron spectroscopy
- Ultrafast probe for high energy density sciences
 - Laser shock compression of materials
 - Ultrafast probe of plasma

Time-resolved XAS for ultrafast chemistry

Light-matter interaction under intense X-ray irradiation

- Nonlinear X-ray optics
 - Multi-photon processes
 - Novel optical responses in the X-ray region
 - X-ray amplification

Nonlinear phenomena via interaction with intense XFEL

Intense XFEL pulse interacts with atoms within a time scale comparable to a core-hole lifetime.

- *Multi-photons* can be involved.
- Core_{*E*}hole atoms can contribute to optical phenomena.

Nonlinear phenomena associated with core-hole atoms

- Double core-hole generation
- Two-photon absorption
- Saturable absorption
- Amplification of x-ray pulse

To obtain enough XFEL intensity for nonlinear phenomena

Focusing XFEL down to < 100 nm, an intensity reaches 10²⁰ W/cm²

Application: Two-photon absorption

50 nm focusing \Rightarrow ~10²⁰ W/cm²

K-shell core-hole of Ge (absorption edge: 11. 1 keV) is created by absorption of two 5.6-keV photons

Tamasaku-san Nature Photon (2014)

Intensity dependence: close to quadratic

Summary

- Novel properties and sciences of XFEL
 - Ultra-brilliant, ultra-short, and coherent
 - Beyond static, statistical, perturbative pictures
- Beamline for XFEL
 - Damage-free & speckle-free optics
 - Single-shot, nondestructive diagnostics
- Experimental instrumentation for single-shot measurement
 - focusing optics, sample injectors, detectors, DAQ system, femtosecond laser
- Experiments at SACLA
 - Femtosecond snapshots of samples
 - Damage-free crystallography
 - X-ray-matter interaction under ultra-high photon flux
 - Pump-probe measurement

Outlook

- Upgrade of SACLA
 - Self seeding
 - Multi-beamline operation (BL1, BL2, BL3)
- New instruments
 - Ultimate focusing
 - High power lasers
 - Detector upgrade