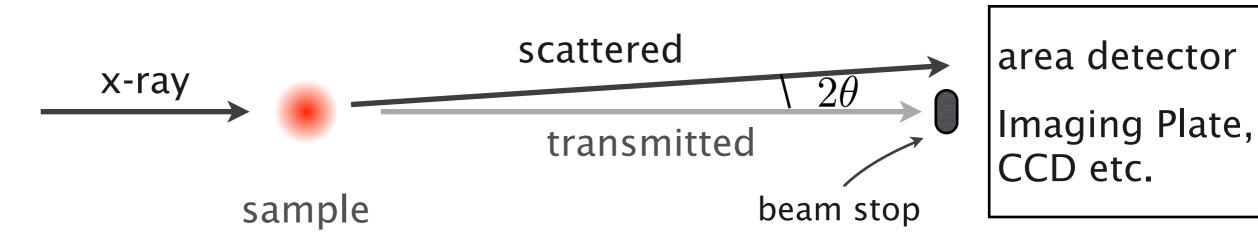
Small-Angle X-ray Scattering Basics & Applications

Yoshiyuki Amemiya and Yuya Shinohara
Graduate School of Frontier Sciences,
The University of Tokyo

Table of Contents

- Introduction
 - What's SAXS?
 - History
- Theory
 - Basic of X-ray scattering
 - Structural Information obtained by SAXS
- Experimental Methods
 - X-ray Optics
 - X-ray Detectors
- Advanced SAXS
 - Microbeam, GI-SAXS, USAXS, XPCS etc...

What's Small-Angle X-ray Scattering?

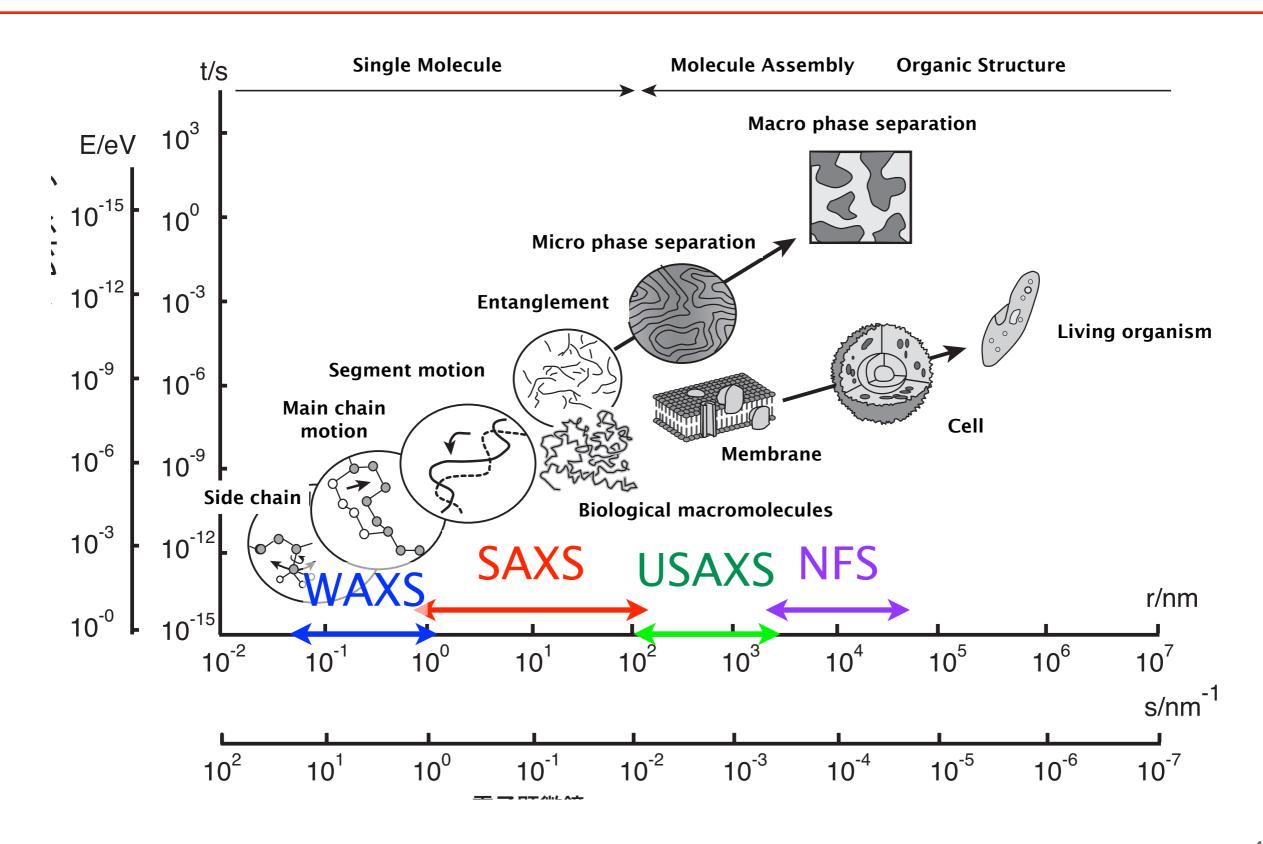


Bragg's law: $\lambda = 2d \sin \theta$

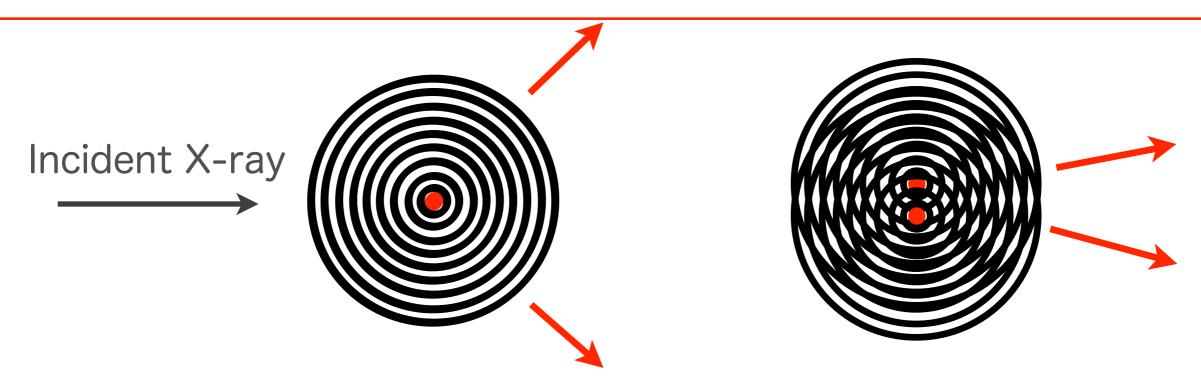
small angle large structure (1 – 100 nm)

crystalline sample --> small-angle X-ray diffraction: SAXD solution scattering / inhomogeneous structure --> SAXS

Hierarchical Structure of Soft Matter



Interference of secondary waves



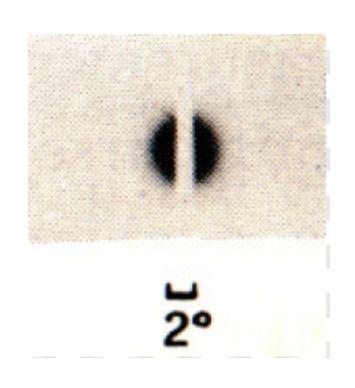
Each electron in marerials vibrates and emits secondary spherical wave When there are two electrons.

- interference between secondary waves from electrons
- when a distance between electrons is small
 - --> scattering at large angle is intensified
- when a distance between electrons is large
 - --> scattering at small angle is intensified -->

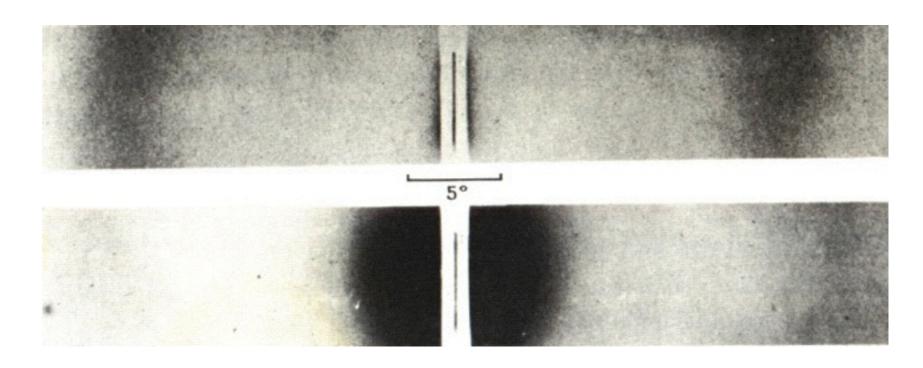
History of SAXS (before 1936)

Krishnamurty (1930)
Hendricks (1932)
Mark (1932)
Warren (1936)

Observation of scattering from powders, fibers, and colloidal dispersions

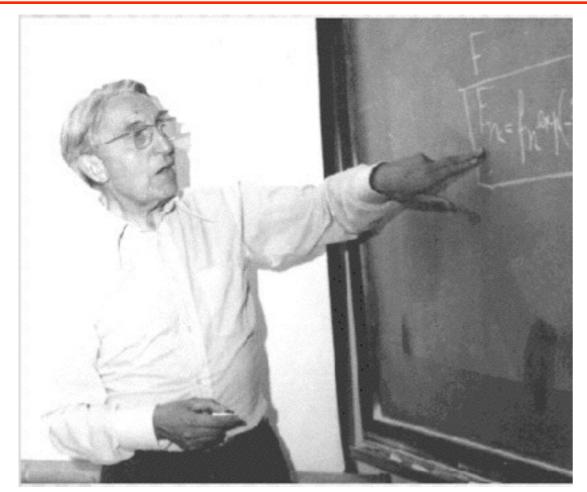


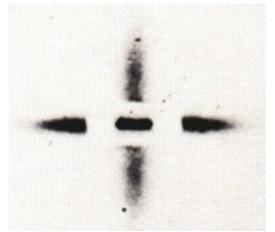
carbon black



Molten silica - silica gel (above) (below)

History of SAXS (after 1936)





Single crystals of Al-Cu hardened alloy

A.Guinier (1937,1939, 1943)

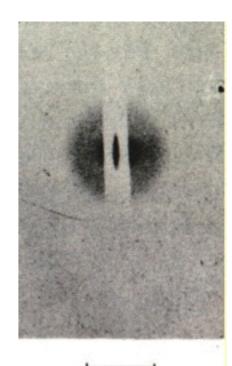
Interpretation of inhomogeneities in Al alloys "G-P zones", introducing the concept of "particle scattering" and formalism necessary to solve the problem of a diluted system of particles.

O. Kratky (1938,1942, 1962)

G. Polod (1942, 1960, 1961)

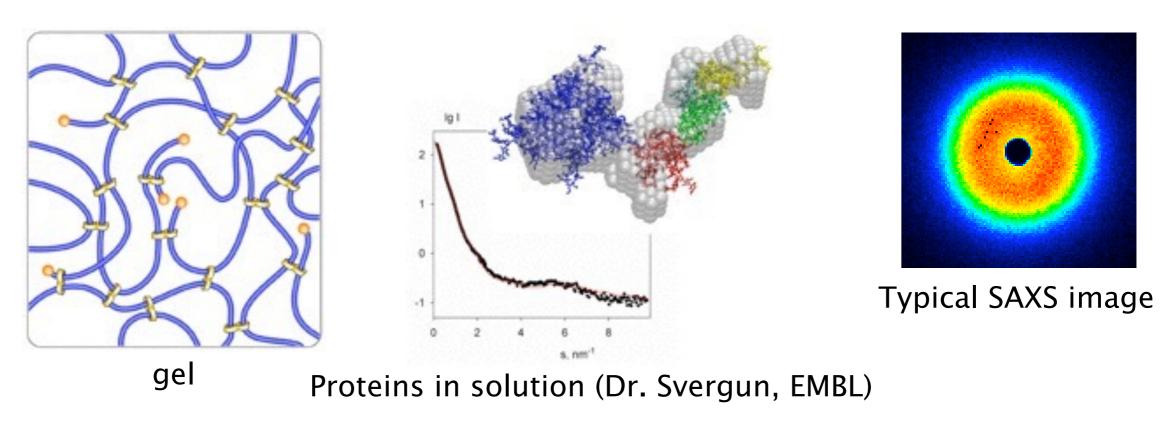
Description of dense systems of colloidal particles, micelles, and fibers.

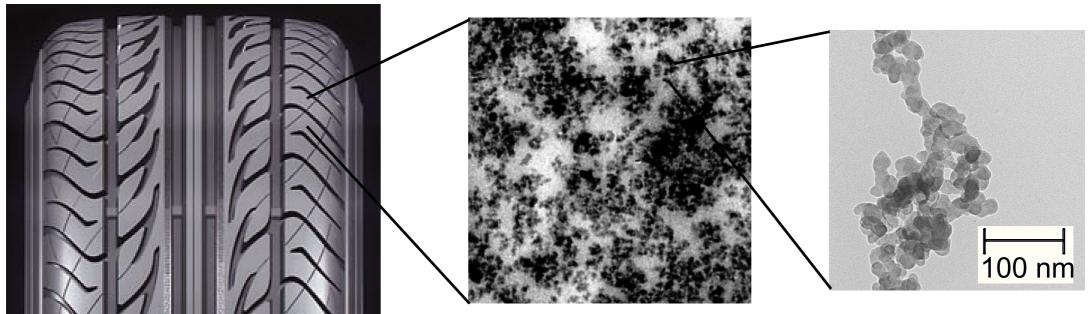
Macromolecules in solution.



Hemoglobin

Application of SAXS



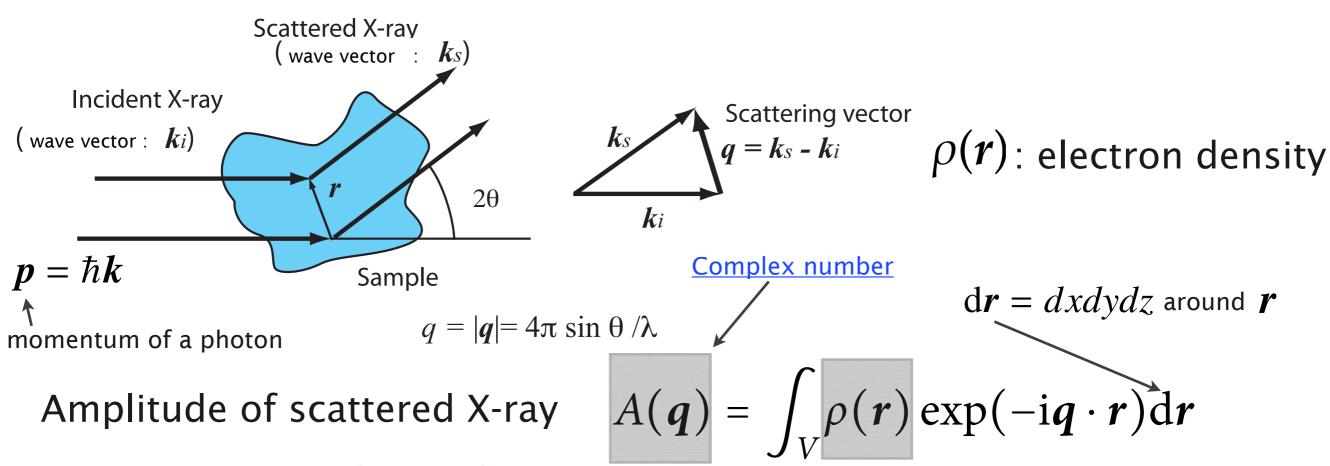


Nanocomposite

Table of Contents

- Introduction
 - What's SAXS ?
 - History
- Theory
 - Basic of X-ray scattering
 - Structural Information obtained by SAXS
- Experimental Methods
 - X-ray Optics
 - X-ray Detectors
- Advanced SAXS
 - Microbeam, GI-SAXS, USAXS, XPCS etc...

Basic of X-ray scattering



Fourier transform of electron density

Intensity of scattered X-ray: $I(\mathbf{q}) = A(\mathbf{q})A^*(\mathbf{q}) = |A(\mathbf{q})|^2$

(Extensive variable)

Intensity of scattered X-ray per volume: $I(q) = \frac{A(q)A^*(q)}{V} = \frac{|A(q)|^2}{V}$

(Intensive variable)

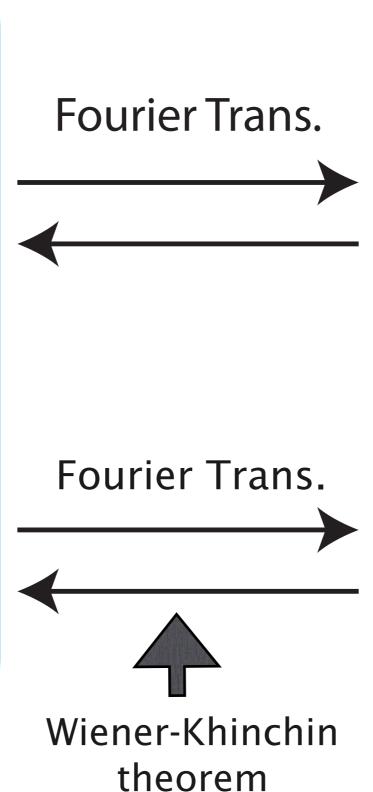
This doesn't depend on sample volume, and

is used to obtain the absolute intensity

Real space and Reciprocal Space

Real Space Electron Density $\rho(r)$ Autocorrelation $\gamma(r)$ Autocorrelation **Function**

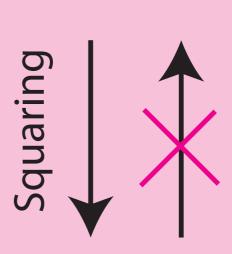
= Patterson Function



Reciprocal Space

Scattering amplitude

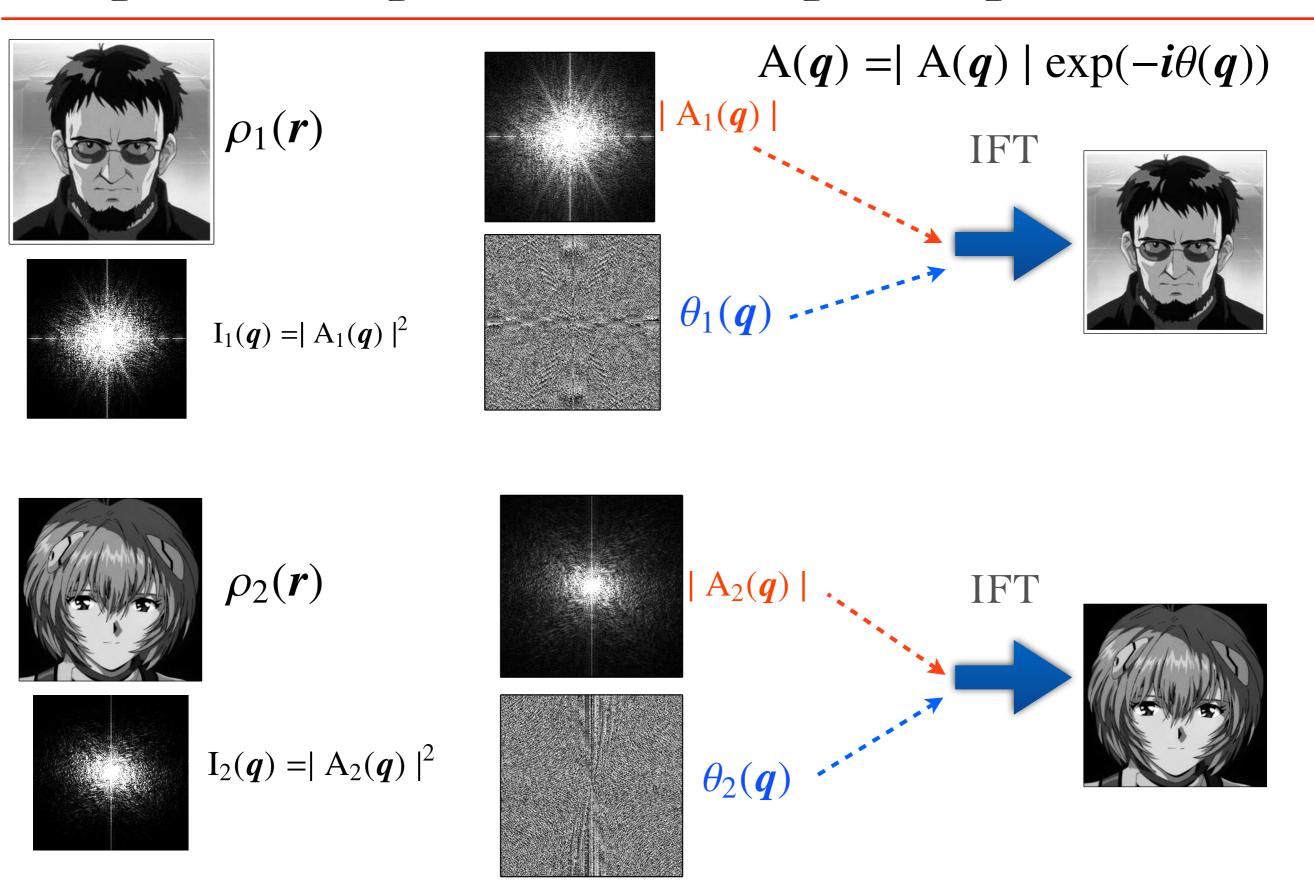
A(q)



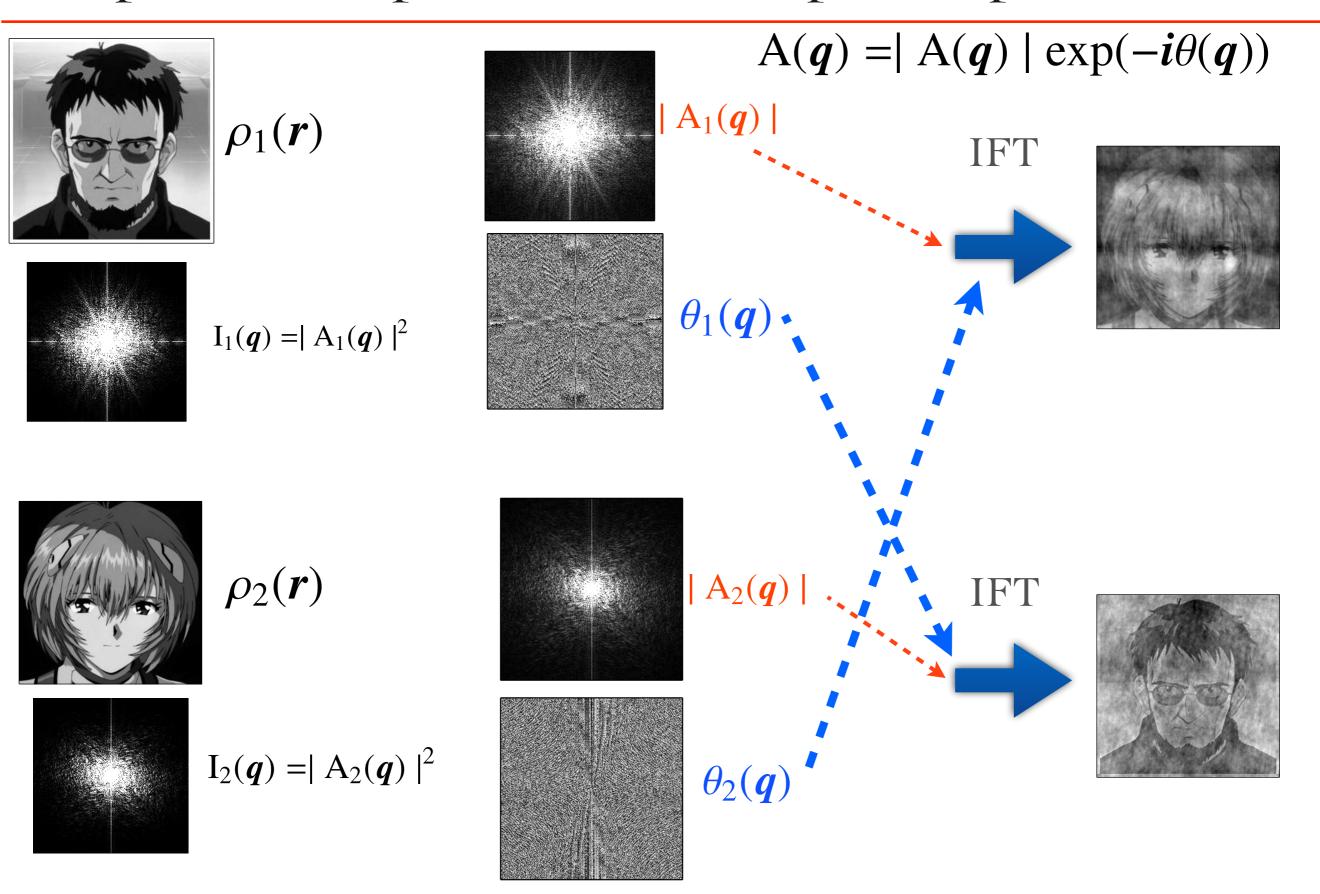
I(q)

Scattering Intensity

Importance of phase, $\theta(q)$ of complex amplitude



Importance of phase, $\theta(q)$ of complex amplitude



Autocorrelation Function & Scattering Intensity

<u>Autocorrelation function of electron density</u>

$$\gamma(\mathbf{r}) = \frac{1}{V} \int_{V} \rho(\mathbf{r}') \rho(\mathbf{r} + \mathbf{r}') d\mathbf{r}' = \frac{1}{V} \frac{P(\mathbf{r})}{\text{Patterson Function}}$$
(Debye & Bueche 1949)

asymptotic behavior of the autocorrelation function

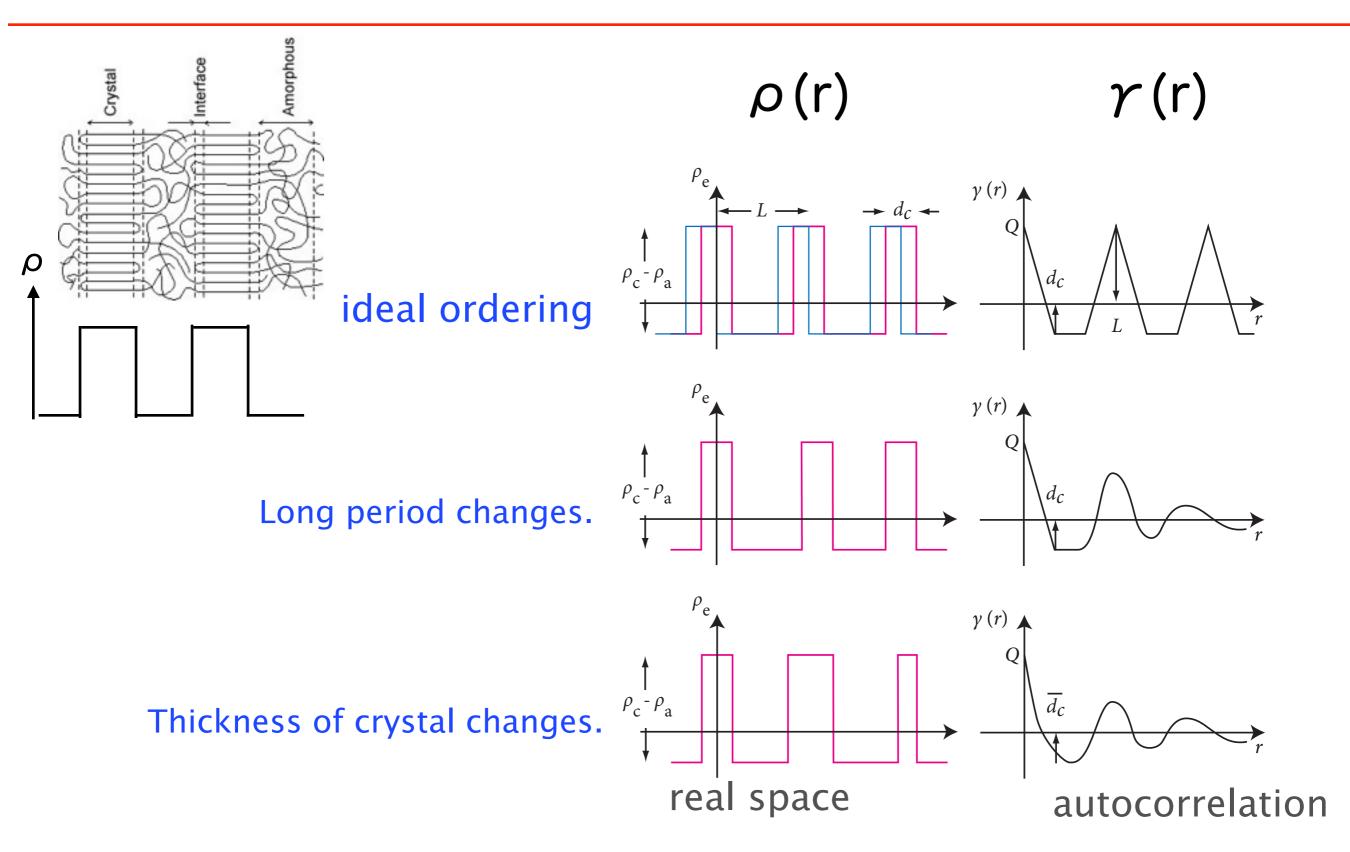
$$\gamma(0) = \langle \rho^2 \rangle \qquad \qquad \gamma(\infty) = \langle \rho \rangle^2$$

<u>Scattering Intensity: Fourier Transform of autocorrelation function</u>

$$I(q) = \int_{V} \gamma(r) \exp(-iq \cdot r) dr$$

cf. Wiener-Khinchin theorem

Example: in case of lamellar



Normalized Autocorrelation Function:

Introducing the relative electron density, $\eta(r)$, as

$$\eta(\mathbf{r}) = \rho(\mathbf{r}) - \langle \rho \rangle$$
 $\longrightarrow \langle \eta^2 \rangle = \langle (\rho(\mathbf{r}) - \langle \rho \rangle)^2 \rangle = \langle \rho^2 \rangle - \langle \rho \rangle^2$

Introducing the normalized autocorrelation function, $\gamma_0(r)$

$$\gamma_0(\mathbf{r}) = \frac{1}{\langle \eta^2 \rangle} \frac{1}{V} \int_V \langle \eta(\mathbf{r'}) \eta(\mathbf{r} + \mathbf{r'}) d\mathbf{r'}$$

then,
$$\gamma_0(\mathbf{r}) = \frac{\gamma(\mathbf{r}) - \langle \rho \rangle^2}{\langle \eta^2 \rangle}$$
 where $\gamma_0(0) = 1$ $\gamma_0(\infty) = 0$

then,
$$I(\boldsymbol{q}) = \langle \eta^2 \rangle \int_V \gamma_0(\boldsymbol{r}) \mathrm{e}^{-\mathrm{i}\boldsymbol{q}\cdot\boldsymbol{r}} \mathrm{d}\boldsymbol{r} + \langle \rho \rangle^2 \delta(\boldsymbol{q})$$

The average of the relative electron density fluctuations determines the magnitude of I(q). The normalized autocorrelation function determines the shape of I(q).

Not observable.

Invariant Q

Invariant:
$$Q = \int_0^\infty \mathrm{I}(q)dq \Rightarrow \int_0^\infty \mathrm{I}(q)4\pi q^2dq$$
 (when isotropic)
$$= (2\pi)^3 \langle \eta^2 \rangle$$
 It doesn't depend on the structure

(:.)
$$Q = \int_0^\infty I(q)dq = \langle \eta^2 \rangle \int_0^\infty \int_V \gamma_0(r) e^{-iq \cdot r} dr dq$$
$$= \langle \eta^2 \rangle \int_V \gamma_0(r) \int_0^\infty e^{-iq \cdot r} dq dr$$
$$= \langle 2\pi \rangle^3 \langle \eta^2 \rangle \int_V \gamma_0(r) \delta(0) dr = (2\pi)^3 \langle \eta^2 \rangle \gamma_0(0) = (2\pi)^3 \langle \eta^2 \rangle$$

$$I(\mathbf{q}) = \langle \eta^2 \rangle \int_V \gamma_0(\mathbf{r}) e^{-i\mathbf{q}\cdot\mathbf{r}} d\mathbf{r} + \frac{\langle \rho \rangle^2 \delta(\mathbf{q})}{\text{Omitted.}}$$

Parseval's theorem

Fourier Trans.
$$A(q) \longleftrightarrow \eta(r)$$

$$\int |A(q)|^2 dq = (2\pi)^3 \int |\eta(r)|^2 dr$$

Table of Contents

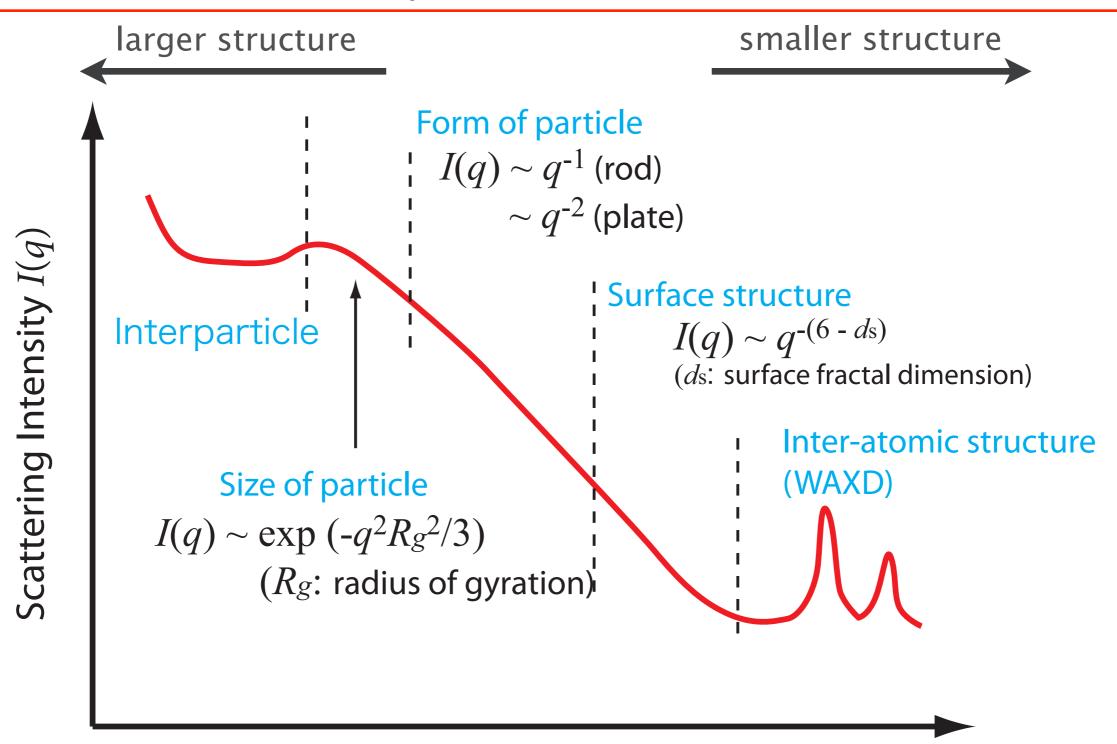
- Introduction
 - What's SAXS?
 - History
- ➤ Theory
 - Basic of X-ray scattering
 - Structural Information obtained by SAXS
- Experimental Methods
 - X-ray Optics
 - X-ray Detectors
- Advanced SAXS
 - Microbeam, GI-SAXS, USAXS, XPCS etc...

Information obtained from SAXS

- 1. Size and form of particulate system
 - Colloids, Globular proteins, etc...
- 2. Correlation length of inhomogeneous structure
 - Polymer chain, two-phase system etc.
- 3. Lattice parameters of distorted crystals (para-crystal)
- 4. Degree of crystallinity, crystal size, crystal distortion
 - Crystalline polymer

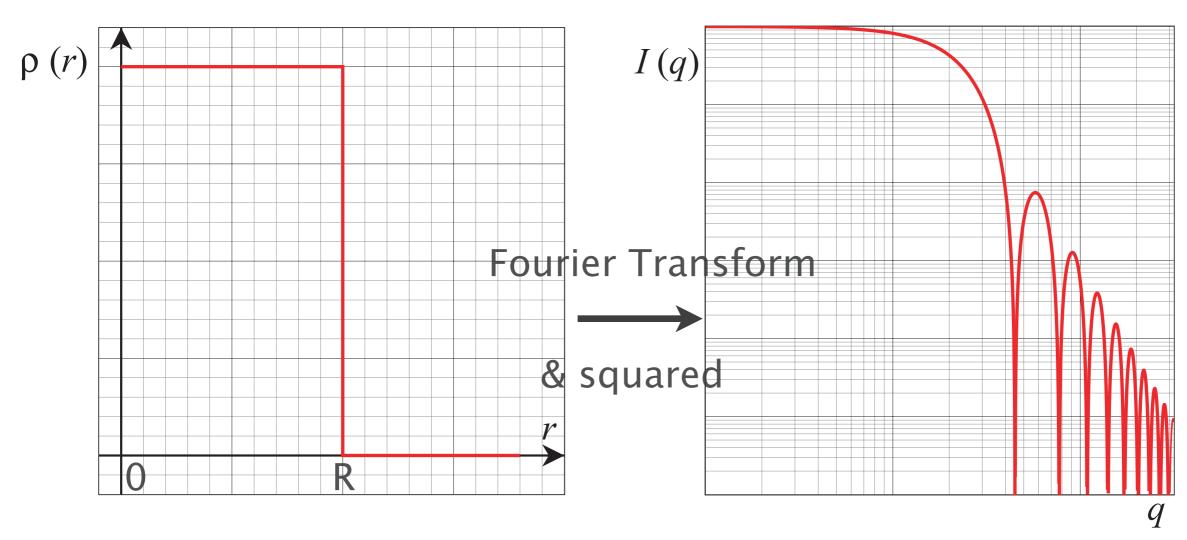
SAXS of particulate system

Relation between SAXS pattern and Structural information



Scattering angle 2θ or Scattering vector q $q = 4\pi \sin \theta /\lambda$

Spherical sample

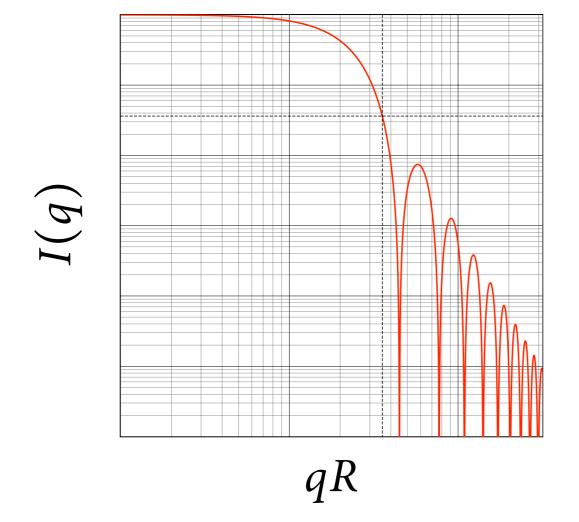


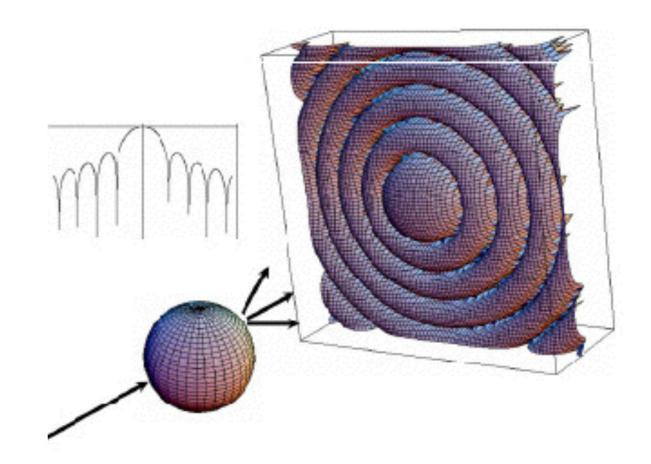
$$\rho(r) = \begin{cases} \Delta \rho & r < R \\ 0 & \text{else} \end{cases}$$

$$I(q) = \frac{(\Delta \rho)^2 V_{\text{particle}}^2}{V} \left[3 \frac{\sin qR - qR \cos qR}{(qR)^3} \right]^2$$

Homogeneous sphere

$$I(q) = \frac{(\Delta \rho)^2 V_{\text{particle}}^2}{V} \left[3 \frac{\sin qR - qR \cos qR}{(qR)^3} \right]^2$$



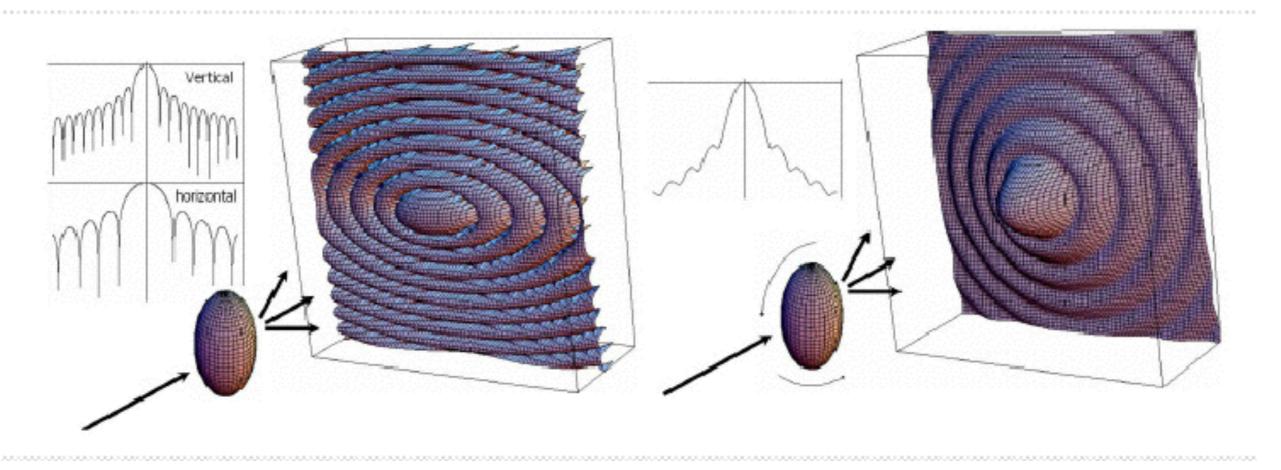


isotropic scattering

Homogeneous elipsiod

Fixed particle

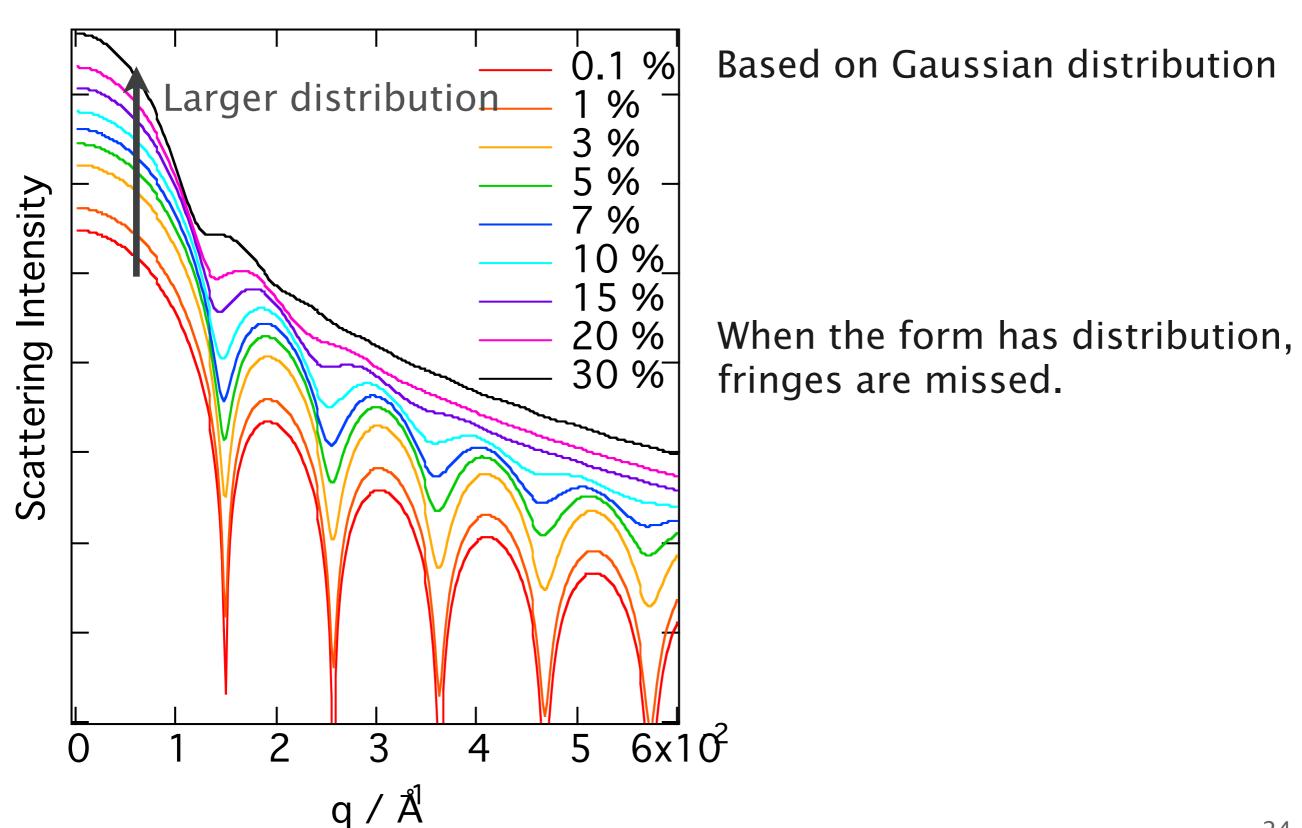
Random orientation



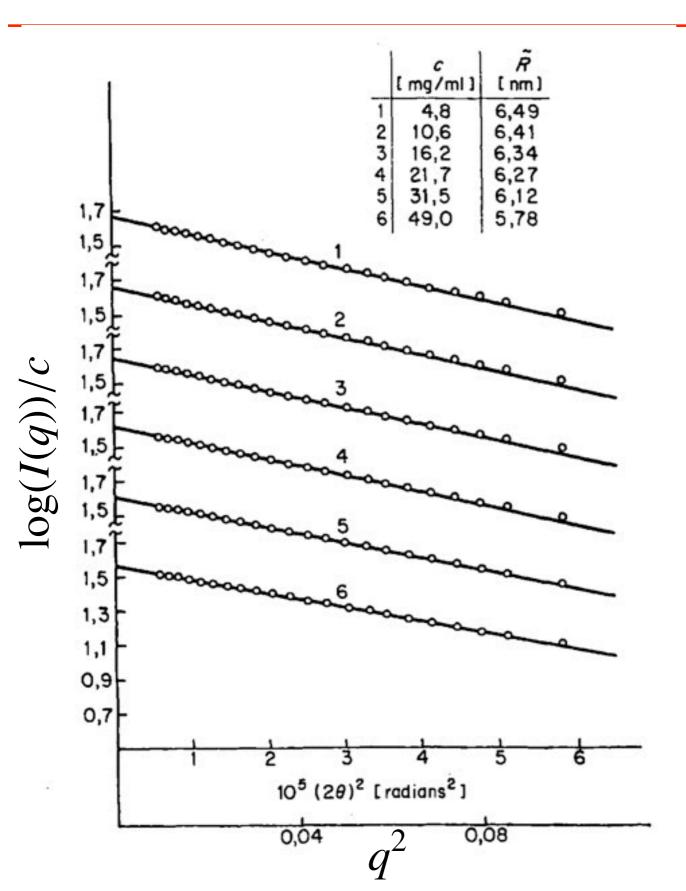
anisotropic scattering

isotropic scattering

Size distribution



Radius of Gyration:
$$R_g$$
 ($R_g^2 = \frac{\int r^2 \rho(\mathbf{r}) d\mathbf{r}}{\int \rho(\mathbf{r}) d\mathbf{r}}$) ----- Guinier Plot



$$I(q) \sim \exp\left(-\frac{q^2 R_g^2}{3}\right)$$

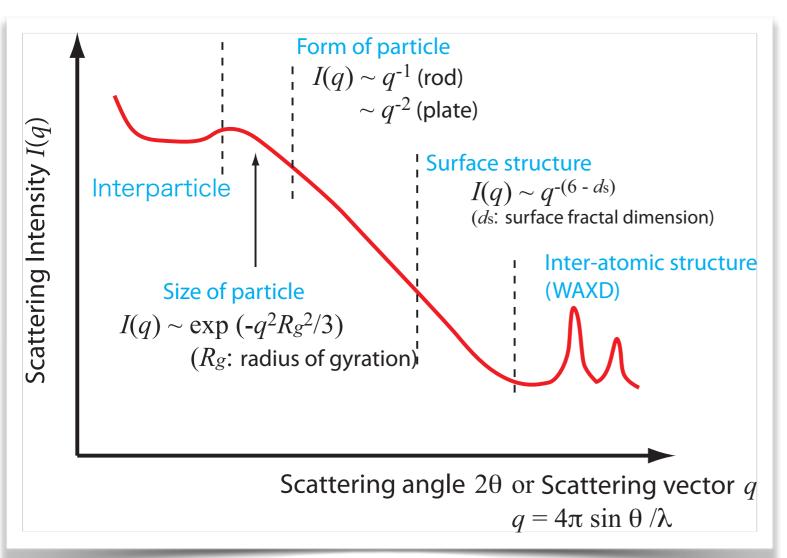
$$\log (I(q)) = -\frac{q^2 R_g^2}{3}$$

Guinier plot:

$$log(I(q)) vs q^2$$

O. Glatter & O. Kratky ed., "Small Angle X-ray Scattering", Academic Press (1982).

Structure Factor & Form Factor



Separation of S(q) & F(q)

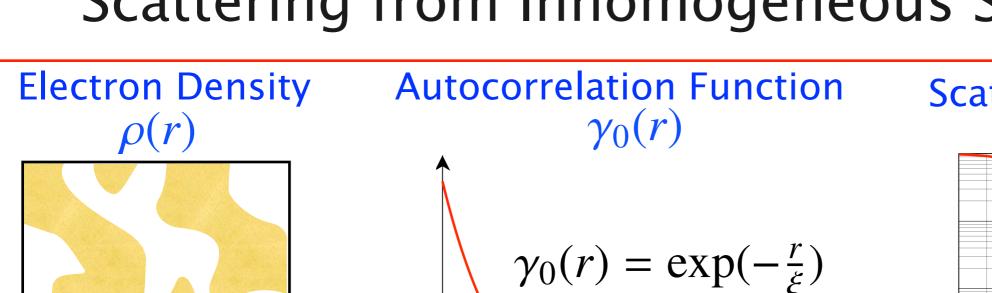
Everlasting issue

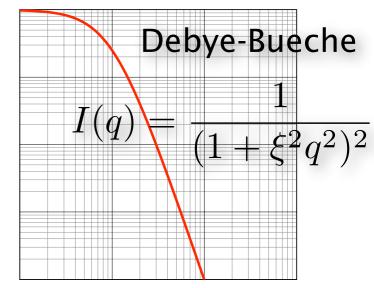
(especially, for non-crystalline sample)

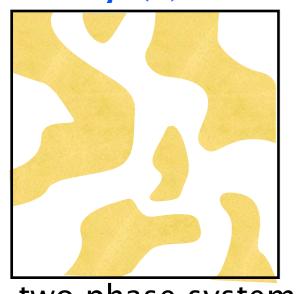
Proposed remedy:

· GIFT (Generalized Inverse Fourier Trans.) by O. Glatter

Scattering from Inhomogeneous Structure



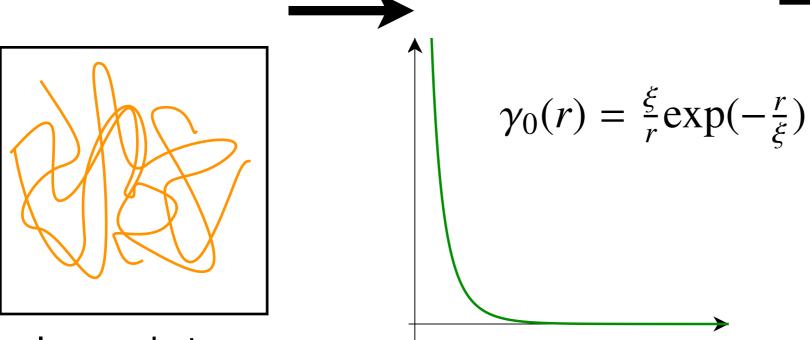


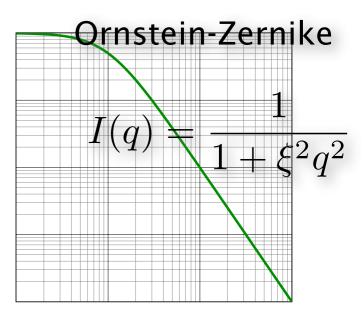


two phase system

Autocorrelation

Fourier trans.





Two-phase system

Phase 1:

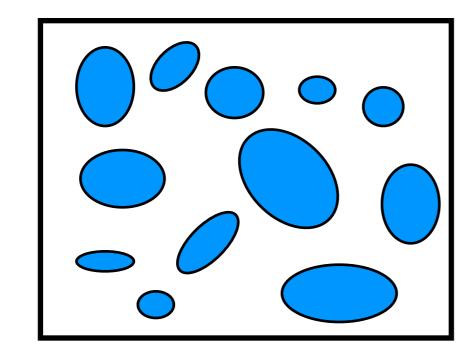
$$A(\boldsymbol{q}) = \int_{\phi V} \rho_{1} e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} d\boldsymbol{r} + \int_{(1-\phi)V} \rho_{2} e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} d\boldsymbol{r}$$

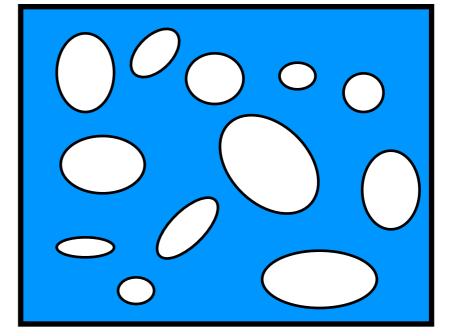
$$= \int_{\phi V} (\rho_{1} - \rho_{2}) e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} d\boldsymbol{r} + \rho_{2} \int_{V} e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} d\boldsymbol{r}$$

$$A(\boldsymbol{q}) = \int_{V} \Delta \rho e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} d\boldsymbol{r} + \rho_{2} \delta(\boldsymbol{q})$$

$$= \int_{\phi V} (\rho_{1} - \rho_{2}) e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} d\boldsymbol{r} + \rho_{2} \int_{V} e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} d\boldsymbol{r}$$

$$A(\boldsymbol{q}) = \int_{V} \Delta \rho \, e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} d\boldsymbol{r} + \rho_{2} \delta(\boldsymbol{q})$$





Babinet's principle

Two complementary structures produce the same scattering.

Two-phase system -- cont.

Averaged square fluctuation of electron density

$$\langle \eta^2 \rangle = \phi (1 - \phi) (\Delta \rho)^2$$
 where $\Delta \rho = \rho_1 - \rho_2$

$$\Phi$$

$$I(q) = 4\pi \langle \eta^2 \rangle \int_0^\infty \gamma_0(r) \frac{\sin(qr)}{qr} r^2 dr$$

$$I(q) = 4\pi \phi (1 - \phi) (\Delta \rho)^2 \int_0^\infty \gamma_0(r) \frac{\sin(qr)}{ar} r^2 dr$$

$$Q = \int_0^\infty I(q)q^2 dq = 2\pi^2 \phi (1 - \phi)(\Delta \rho)^2$$

Invariant

only on the volume fraction and the contrast between the two phases.

Porod's law

For a sharp interface, the scattered intensity decreases as

$$I(q) \rightarrow (\Delta \rho)^2 \frac{2\pi}{q^4} \underline{S/V}$$
internal surface area

Combination of Porod's law & Invariant Q

$$\pi \cdot \frac{\lim_{q \to \infty} I(q)q^4}{Q} = \boxed{\frac{S}{V}}$$

surface-volume ratio

important for the characterization of porous materials

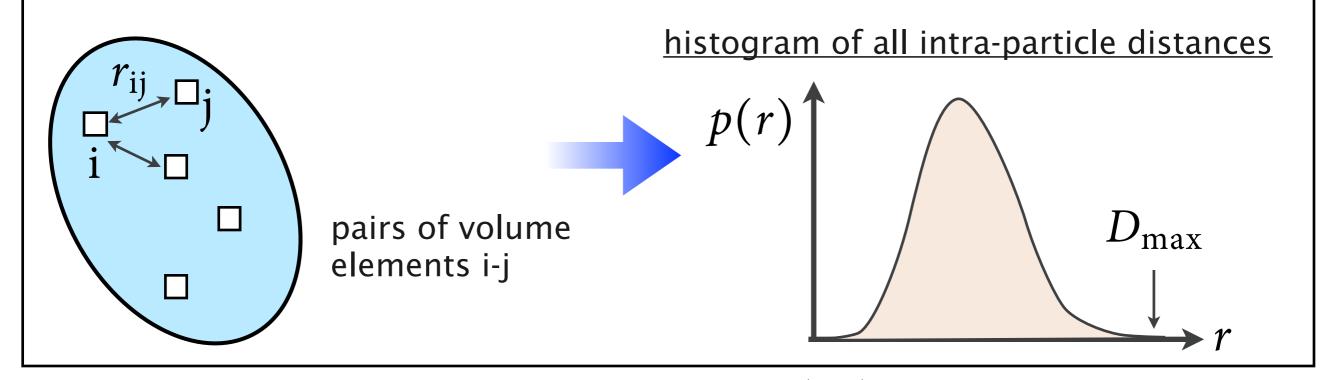
Pair Distance Distribution Function:

Scattering intensity:
$$I(q) = 4\pi \int_0^\infty \gamma_0(r) \frac{\sin(qr)}{qr} r^2 dr$$
 (when isotropic)

PDDF:
$$p(r) = r^2 \gamma_0(r)$$

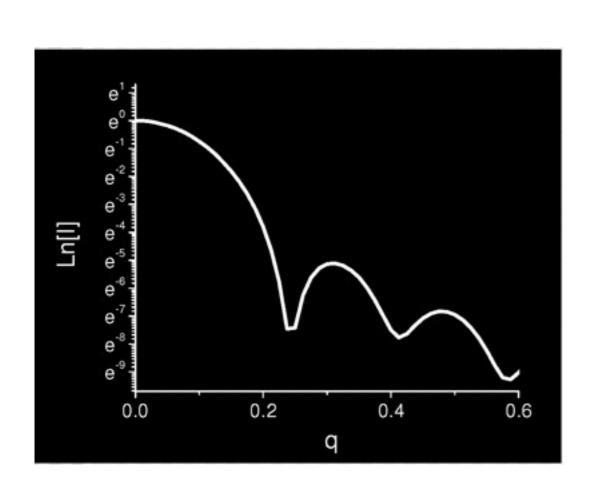
the set of distances joining the volume elements within a particle, including the case of non-uniform density distribution.

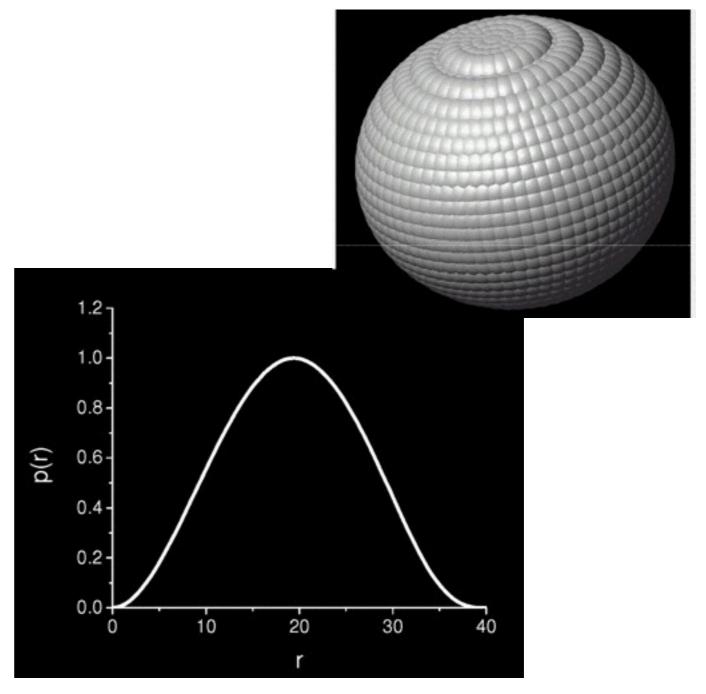
Particle's SHAPE and maximum DIMENSION



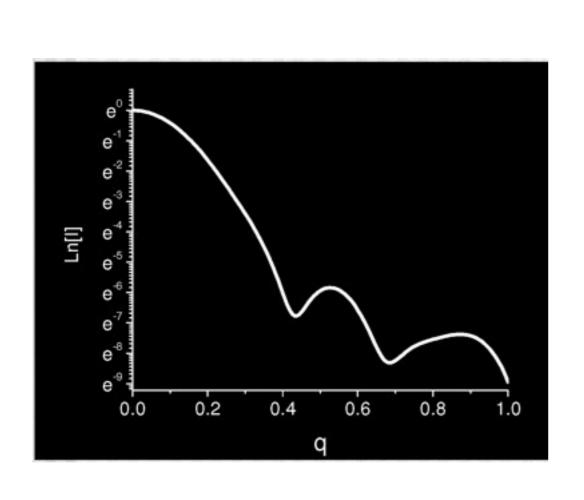
$$I(q) = 4\pi \int_0^\infty p(r) \frac{\sin(qr)}{qr} dr$$

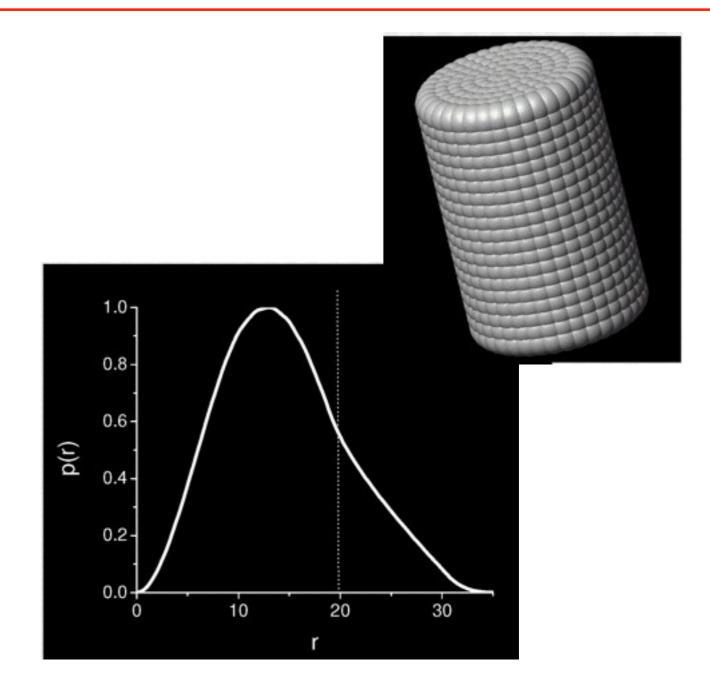
I(q) & P(r) of Spherical particle



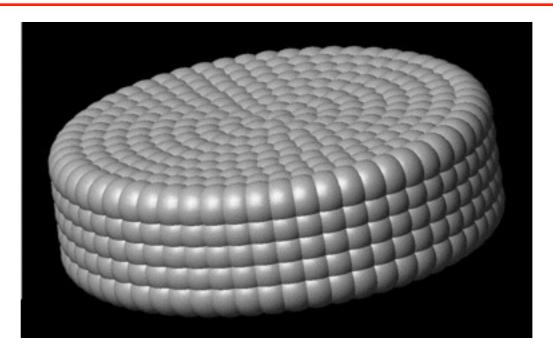


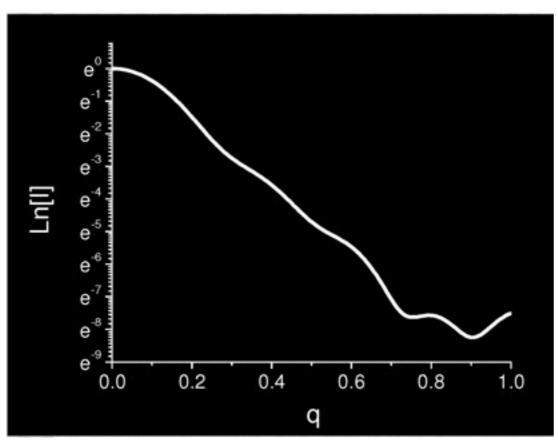
I(q) & P(r) of Cylindrical particle

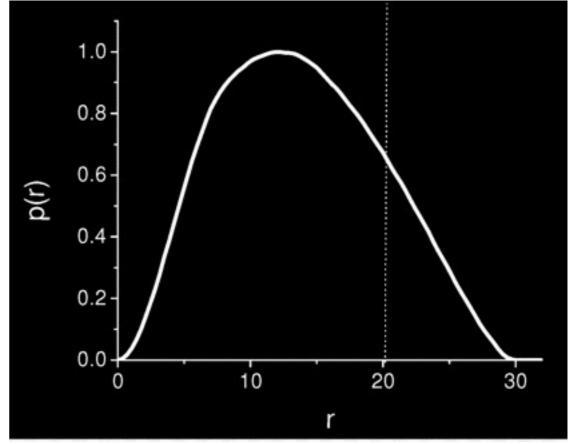




I(q) & P(r) of Flat particle

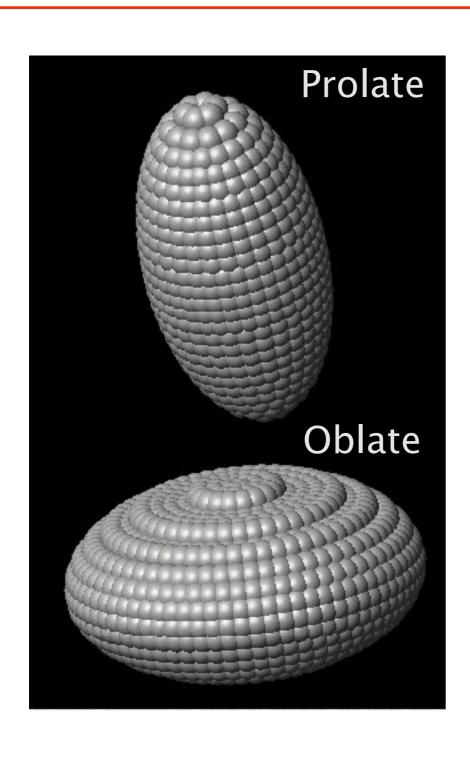


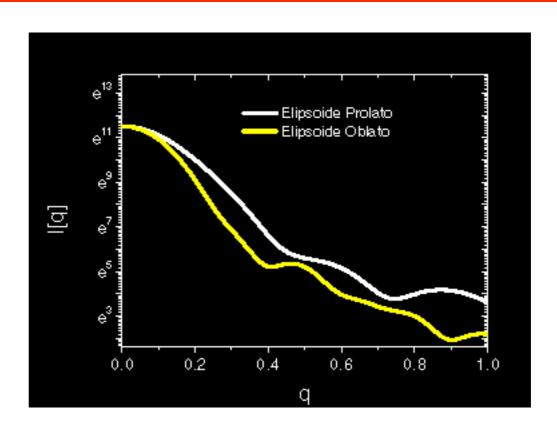


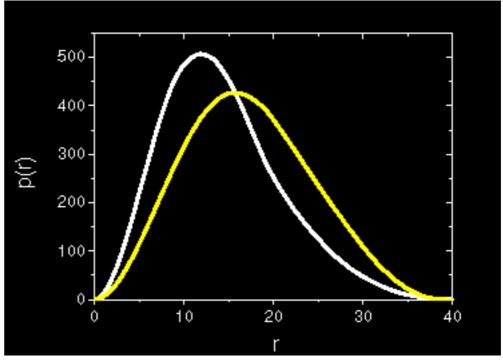


courtesy to Dr. I.L.Torriani

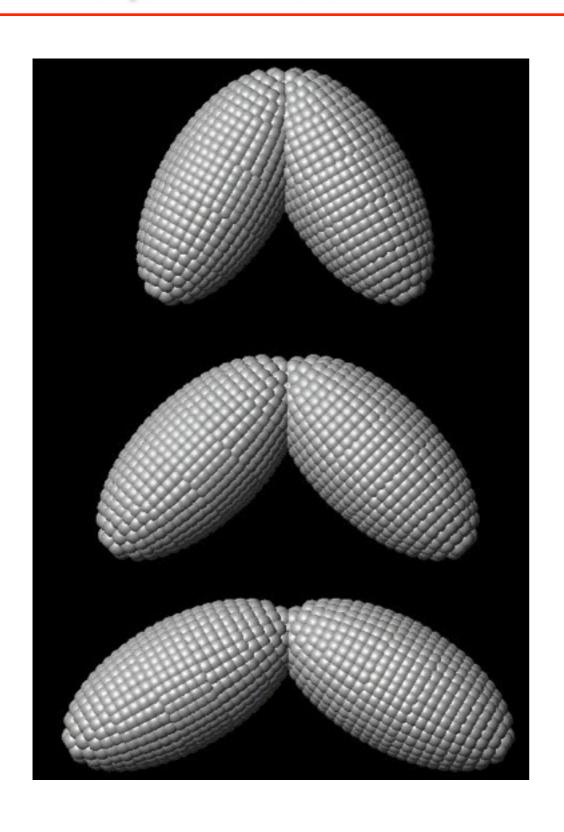
I(q) & P(r) of Ellipsoids

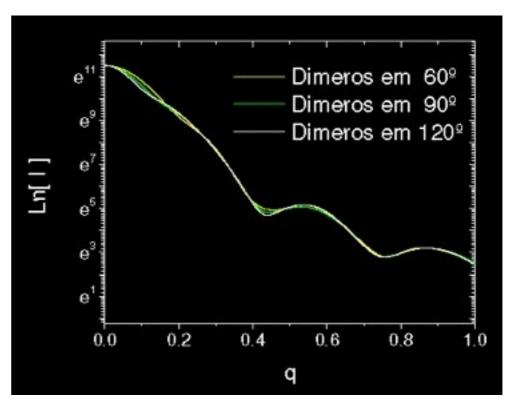


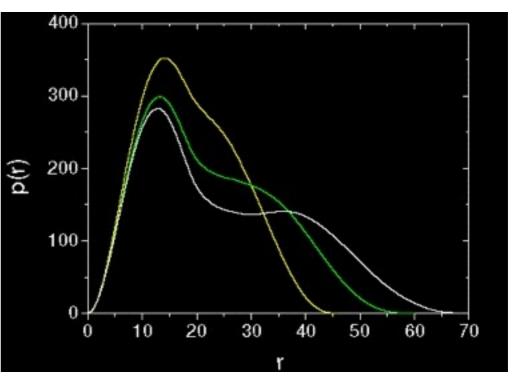




I(q) & P(r) of Two ellipsoid = dimer

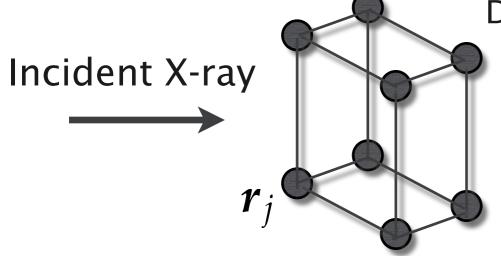






courtesy to Dr. I.L.Torriani

Diffraction from Periodic Structure



Diffraction from Unit cell (Crystalline structure factor)

$$F(q) = \sum_{j} f(q) \exp(-iq \cdot r_j)$$

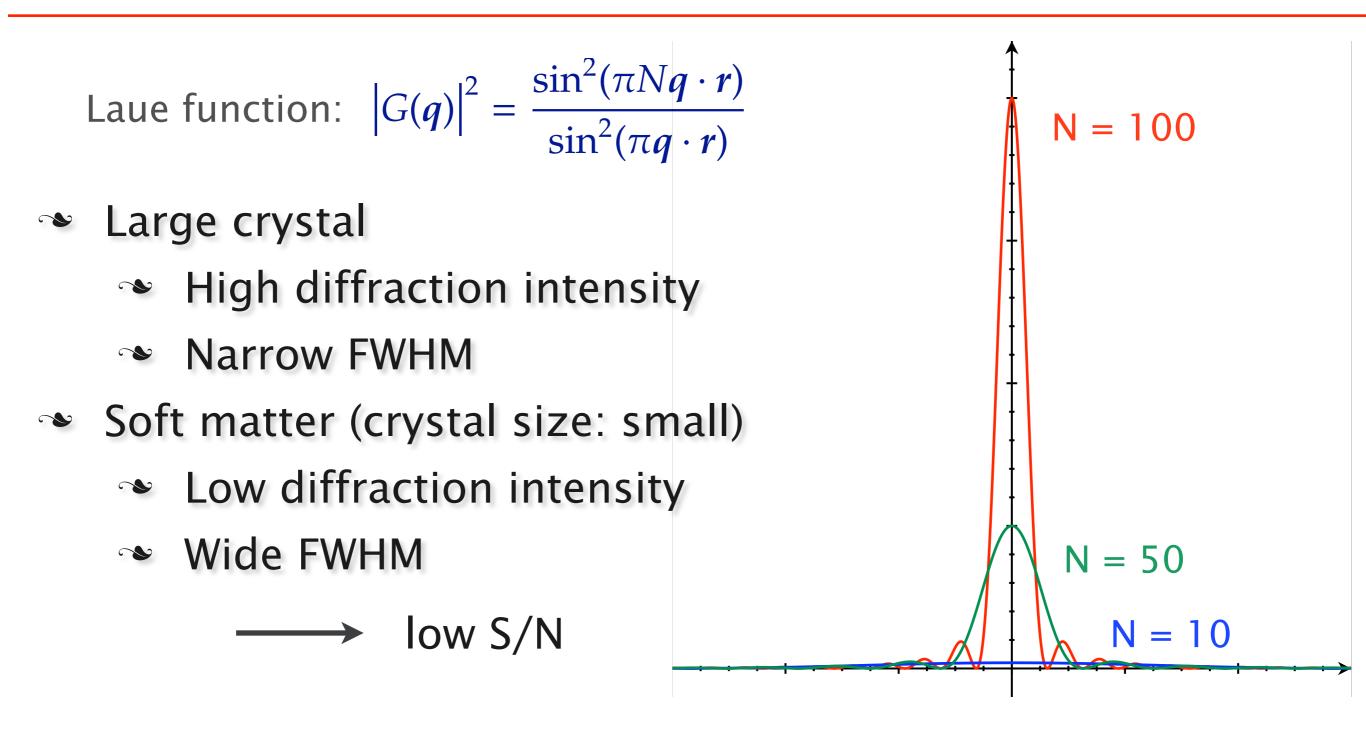
f(q): Atomic Form Factor

Diffraction Intensity:
$$I(q) \sim |G(q)|^2 |F(q)|^2$$

Laue function:
$$|G(q)|^2 = \frac{\sin^2(\pi Nq \cdot r)}{\sin^2(\pi q \cdot r)}$$

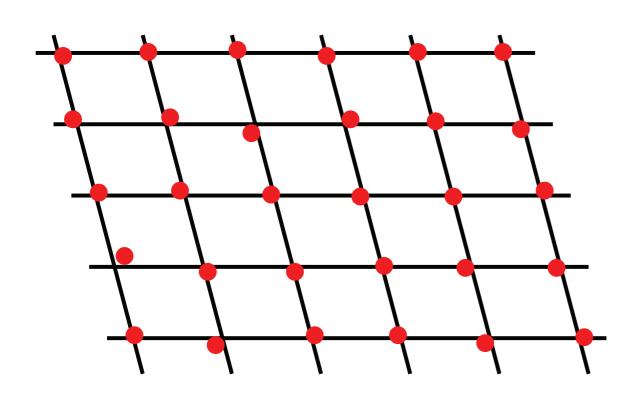
- Maximum ~ N
- \sim FWHM ~ 2π/N
 - FWHM --> Size of crystal

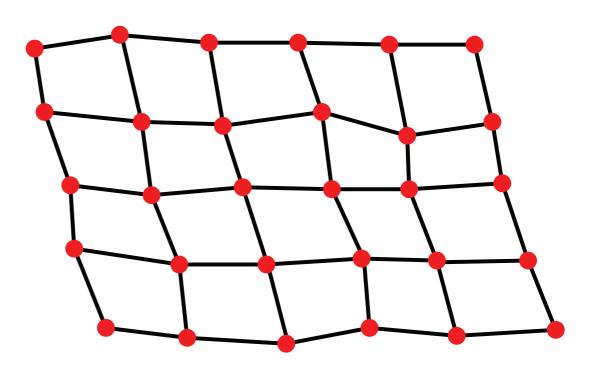
Laue Function



Crystal size --> Intensity & FWHM of diffraction

Imperfection of crystal (2D)



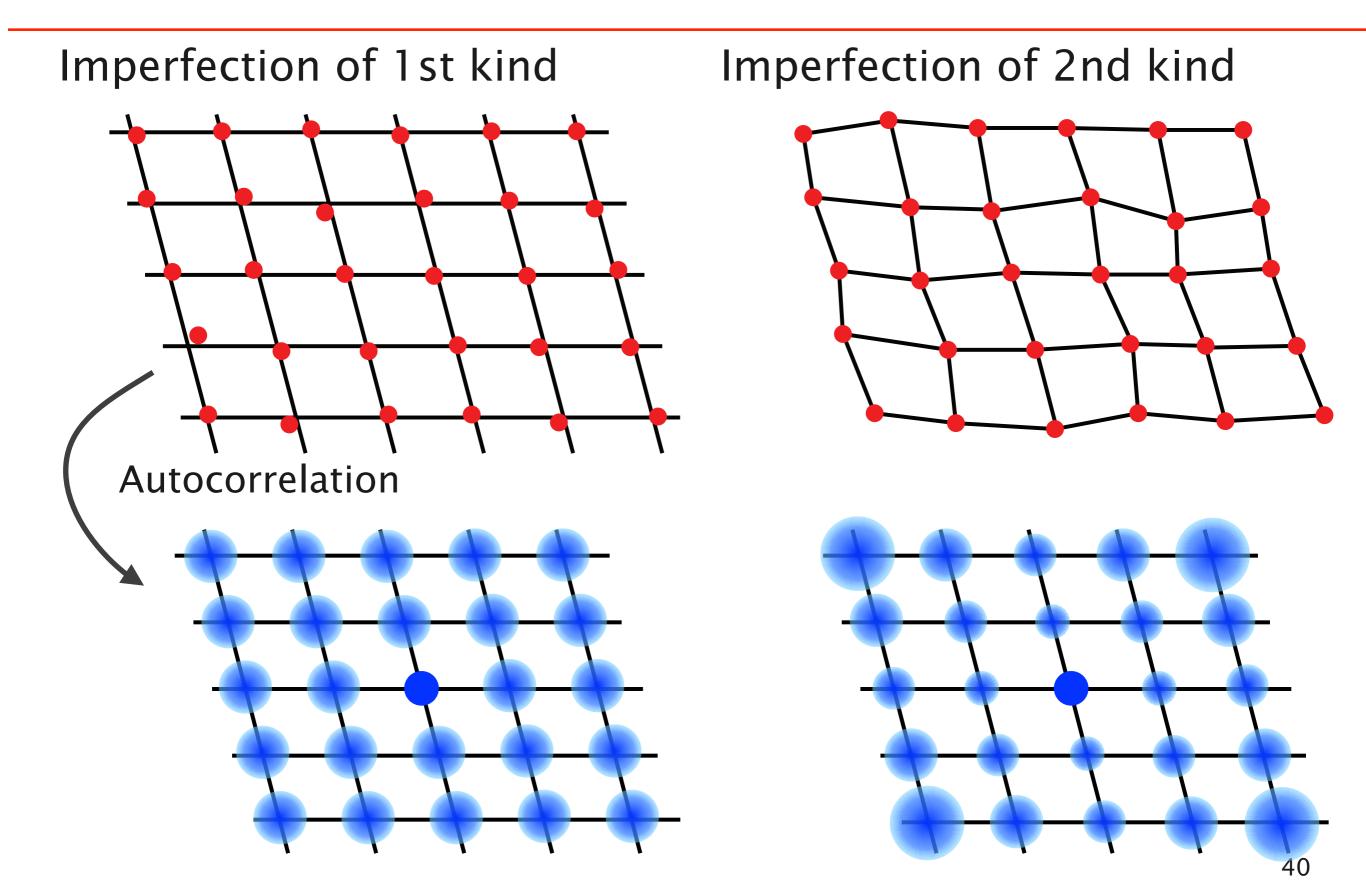


Imperfection of 1st kind

Thermal fluctuation etc.

Imperfection of 2nd kind in the case of soft matter

Imperfection of crystal

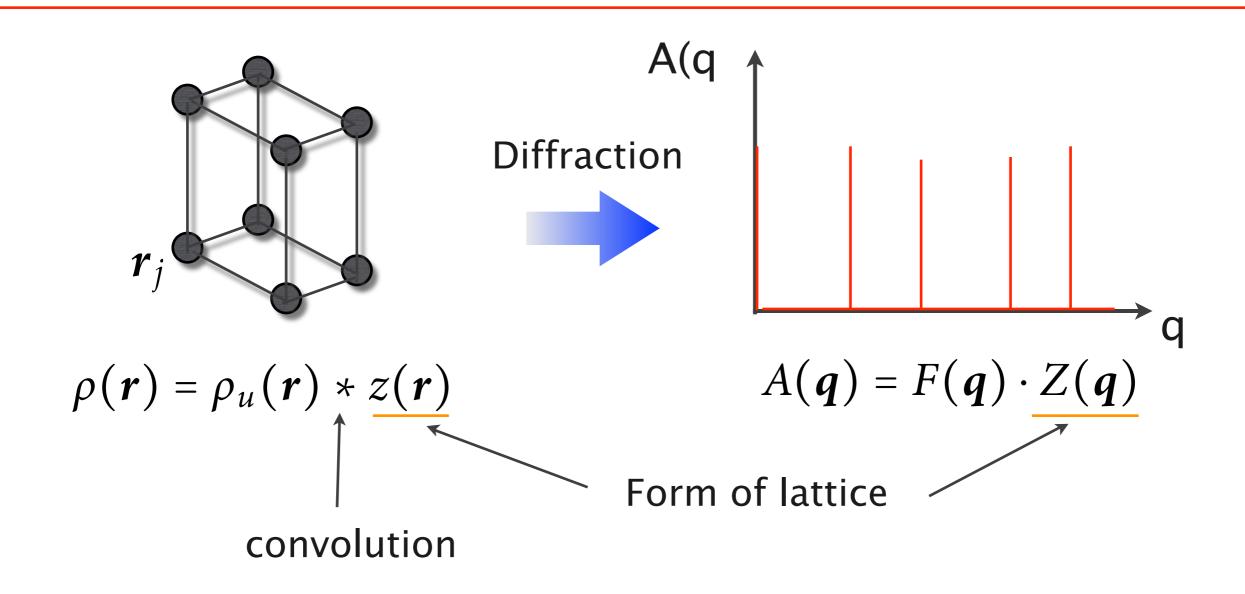


Imperfection of lattice (1D)

Imperfection of 1st kind +++++++++++

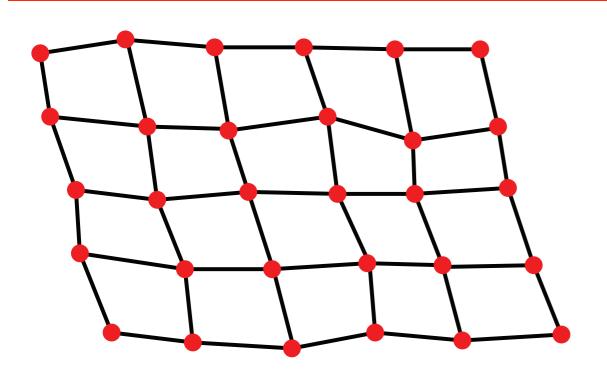
Effect of imperfections on diffraction?

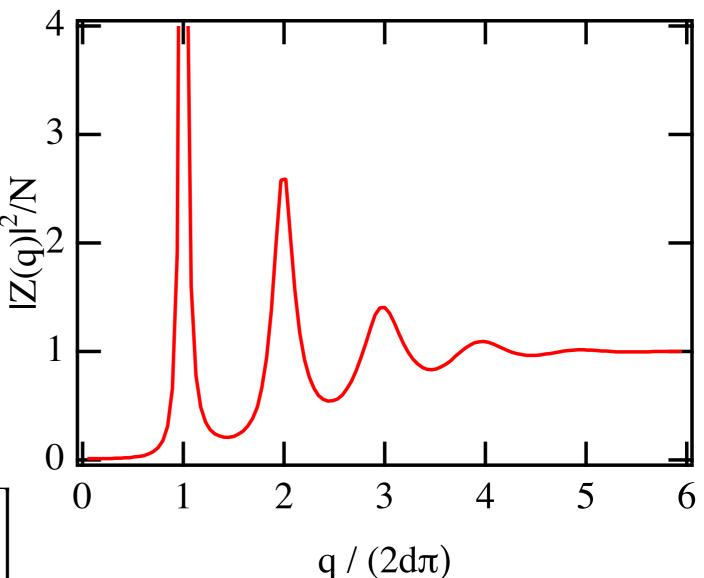
Diffraction from lattice-structure



z(r) with imperfection -> calculate Z(q)

Imperfection of 2nd kind





Paracrystal theory

$$|Z(q)|^2 = N \left[1 + \frac{P(q)}{1 - P(q)} + \frac{P^*(q)}{1 - P^*(q)} \right]$$

Decrease of diffraction intensity Increase of FWHM

R. Hosemann, S. N. Bagchi, Direct Analysis of Diffraction by Matter

Table of Contents

- Introduction
 - What's SAXS?
 - History
- Theory
 - Basic of X-ray scattering
 - Structural Information obtained by SAXS
- Experimental Methods
 - X-ray Optics
 - X-ray Detectors
- Advanced SAXS
 - Microbeam, GI-SAXS, USAXS, XPCS etc...

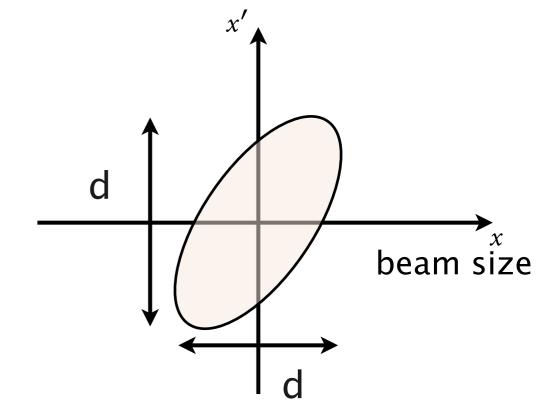
X-ray Source for SAXS

Emittance -- Product of size and divergence of beam

beam divergence

Brilliance =
$$\frac{d^4N}{dt \cdot d\Omega \cdot dS \cdot d\lambda/\lambda}$$

[photons/(s·mrad²·mm²·0.1% rel.bandwidth)]



SAXS needs to use a low divergence and small beam

High brilliance beam is required!

X-ray Optics for SAXS

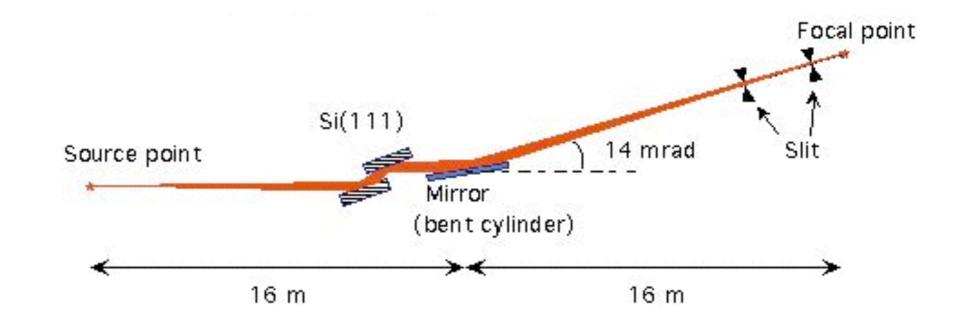
PF BL-15A

Storage-Ring

2.5 GeV
250-400 mA

Ge Bent Monochromator
Sample

Sample

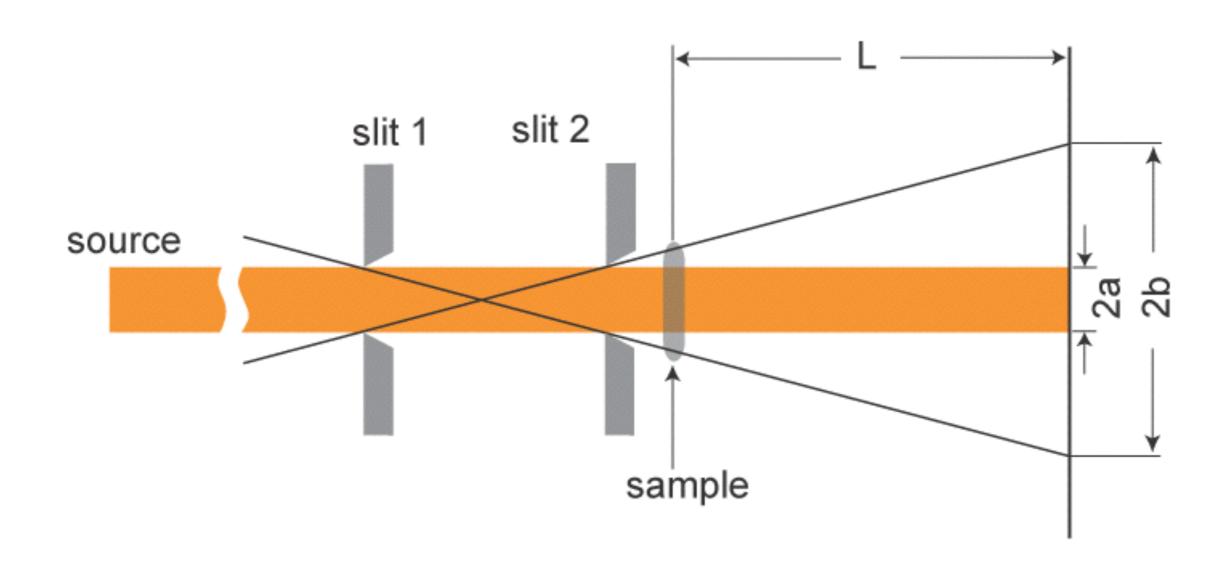


PF BL-10C

Focal Point

X-ray CCD Detector

Slits for SAXS



Detectors for SAXS

	Good Point	Drawback
PSPC	time-resolvedphoton-countinglow noise	· counting-rate limitation
Imaging Plate	wide dynamic rangelarge active area	· slow read-out
CCD with Image Intensifier	time-resolvedhigh sensitivity	image distortionlow dynamic range
Fiber- tapered CCD	fast read-outautomated measurement	 not good for time- resolved

X-ray CCD detector with Image Intensifier

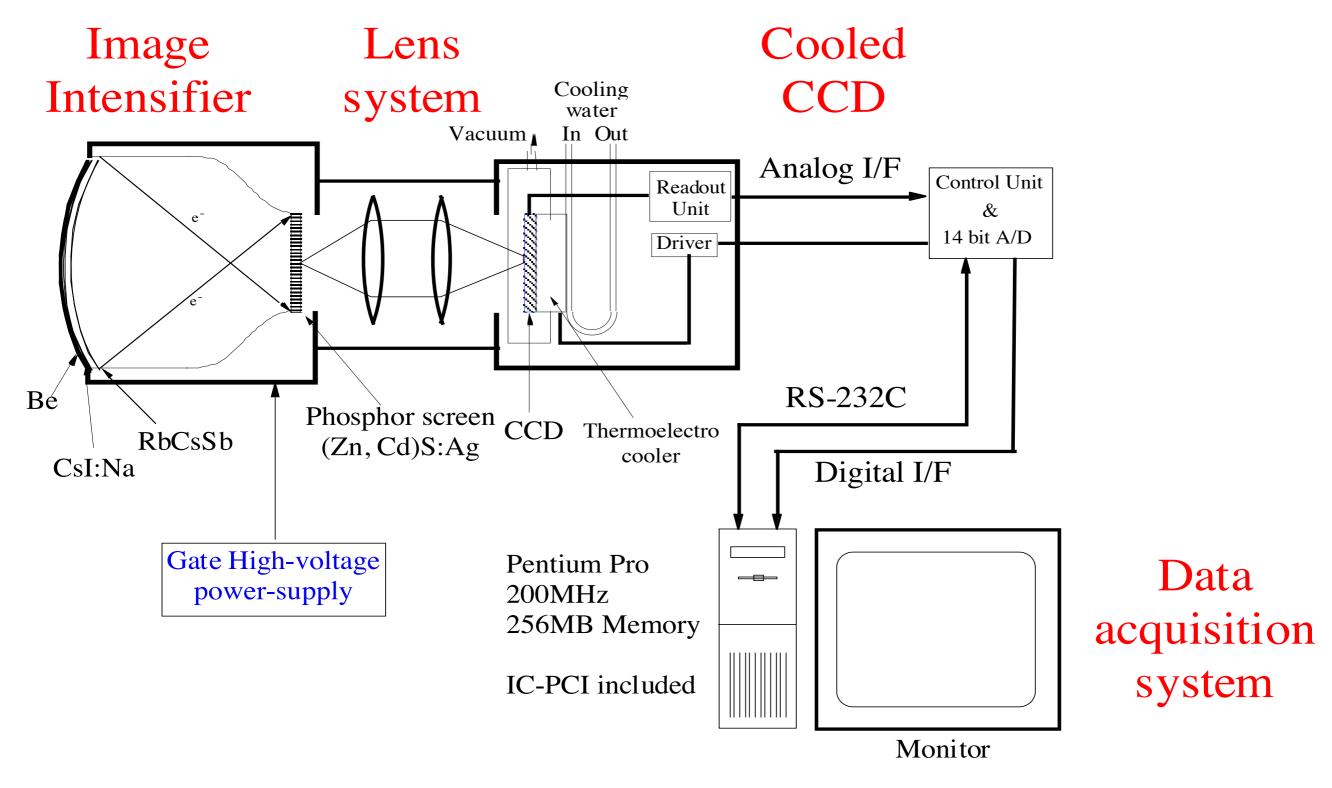


Table of Contents

- Introduction
 - What's SAXS?
 - History
- Theory
 - Basic of X-ray scattering
 - Structural Information obtained by SAXS
- Experimental Methods
 - X-ray Optics
 - X-ray Detectors
- Advanced SAXS
 - Microbeam, GI-SAXS, USAXS, XPCS etc...

Advanced SAXS

Microbeam X-ray

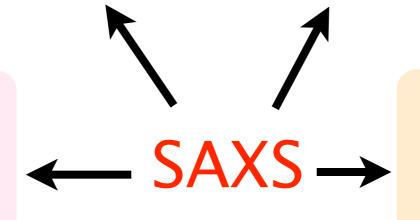
- Inhomogeneity of nano-structure
- local time evolution of structure

Time-resolved

- time evolution of structure

GI-SAXS

- surface, interface, thin films



XPCS

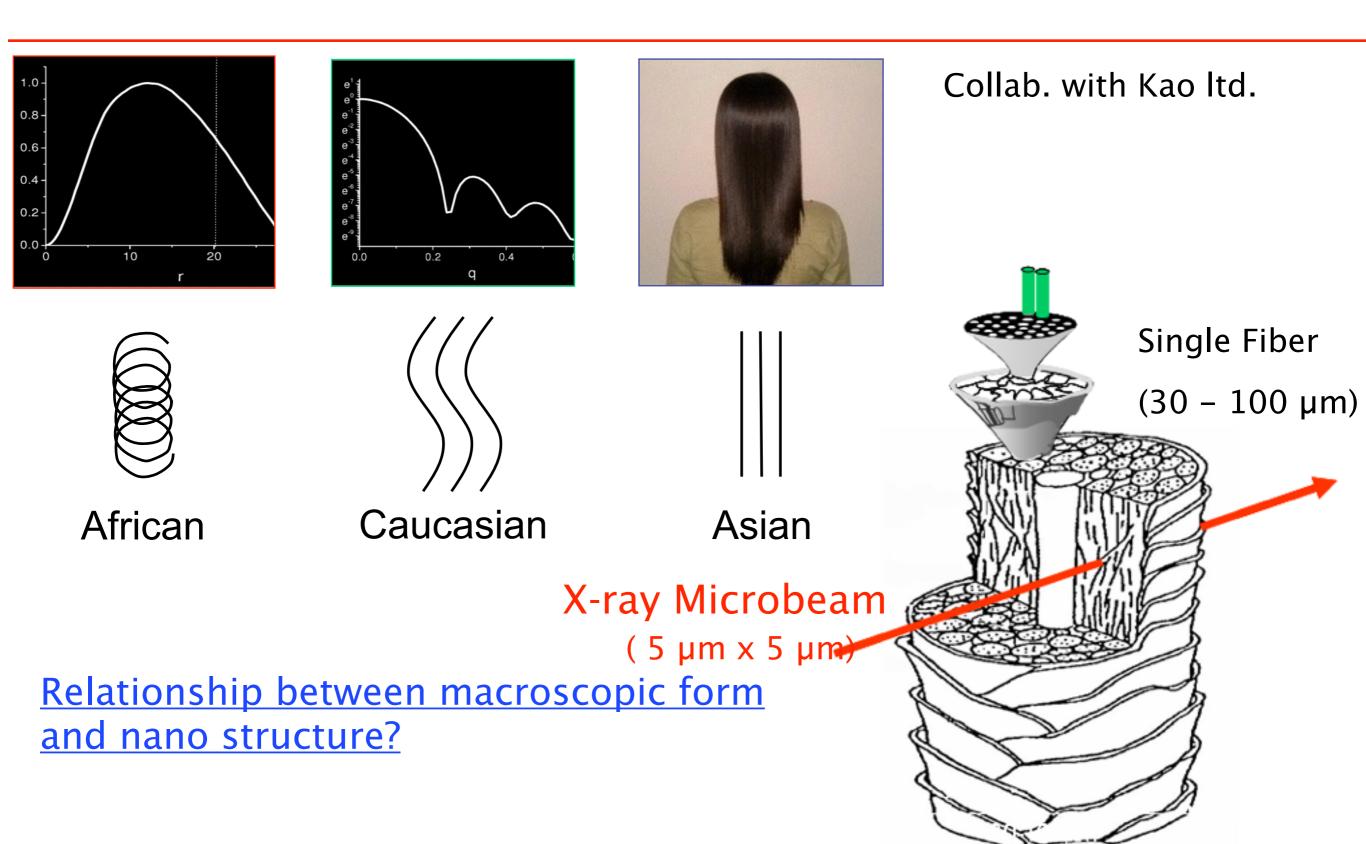
- structural fluctuation
- dynamics

Combined measurement with DSC, viscoelasticity wide-q (USAXS-SAXS-WAXS) 2D measurement

- hierarchical structure

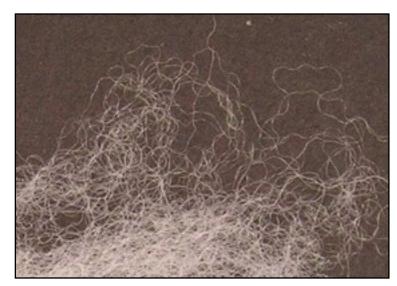
- anisotropic structure

Application of paracrystal theory

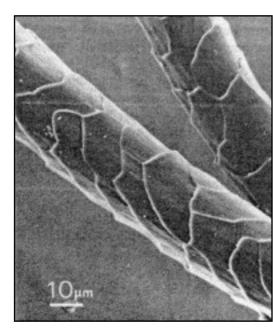


Local observation with an X-ray microbeam

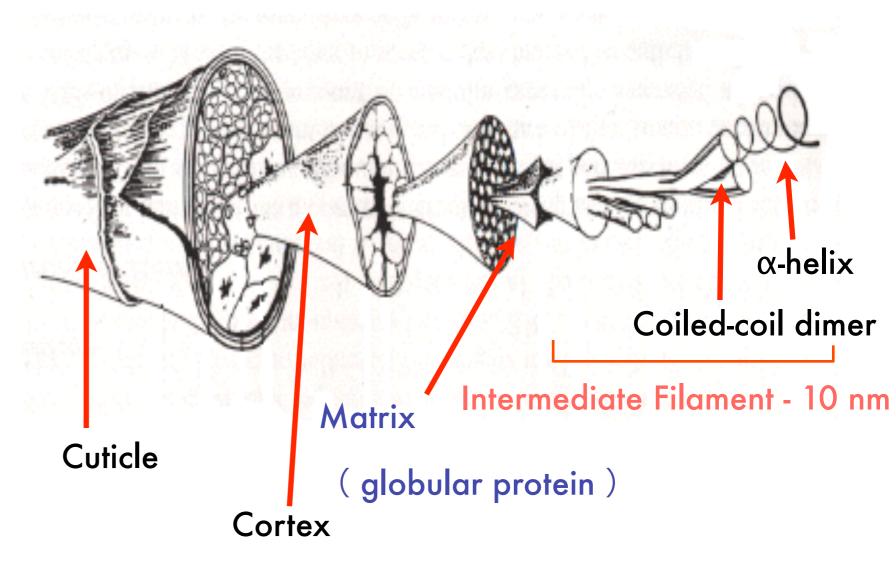
Internal structure of wool



SEM 像



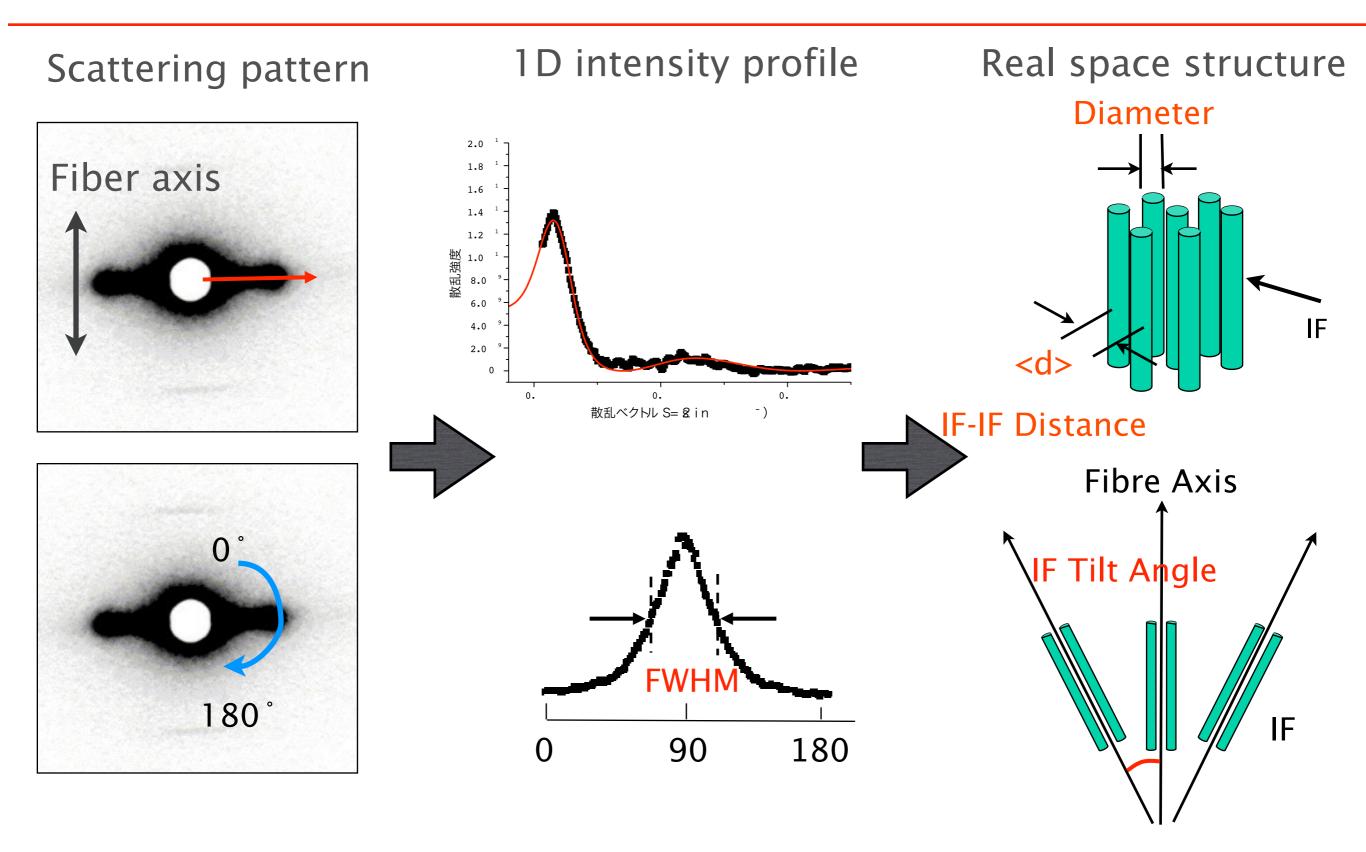
H. Ito et al., Textile Res. J. **54**, 397–402 (1986).



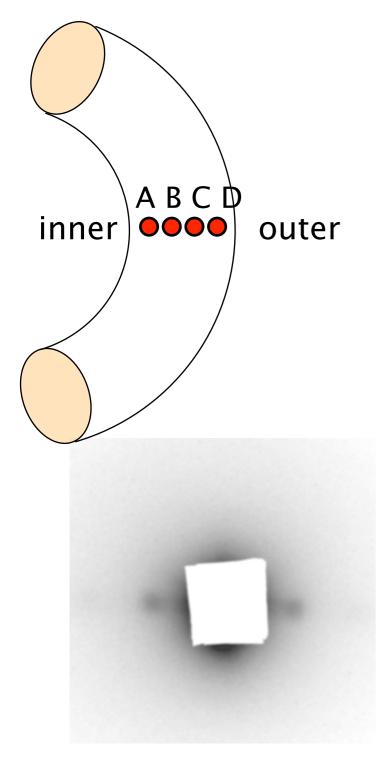
R. D. B. Fraser et al., Proc. Int. Wool Text. Res. Conf., Tokyo, II, **37**, (1985) partially changed.

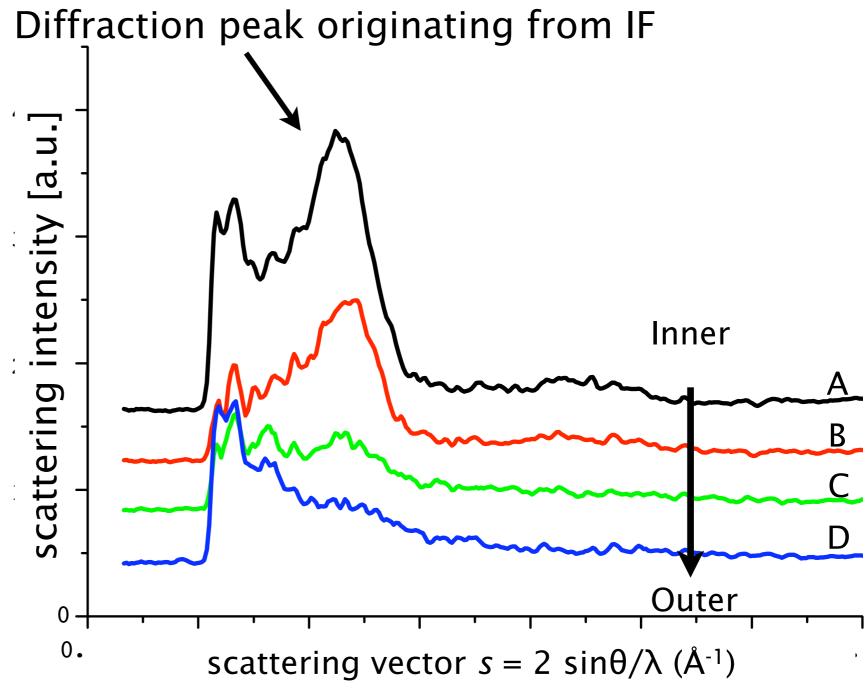
Relationship between IF distribution and hair curlness?

Structure of Intermediate Filament

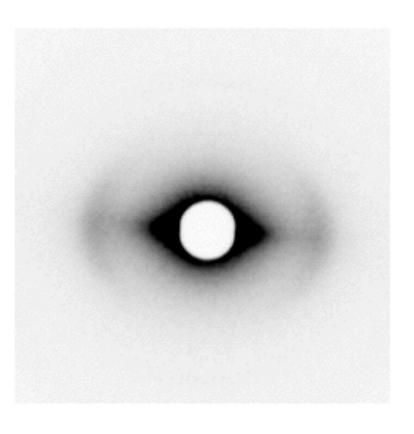


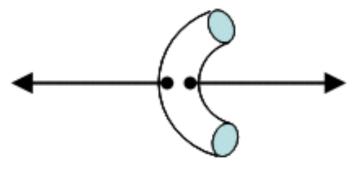
Diffraction intensity profiles



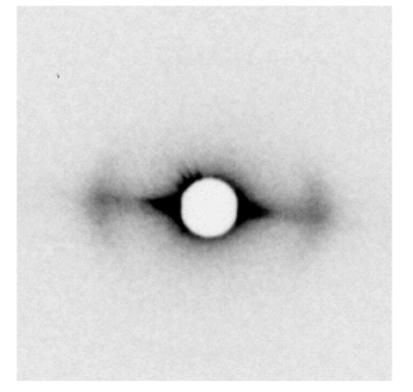


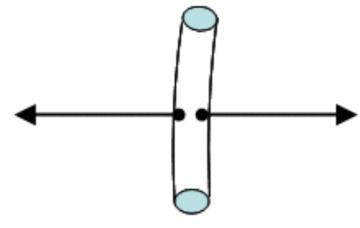
Difference in diffraction intensity --> Structural difference in cortex.





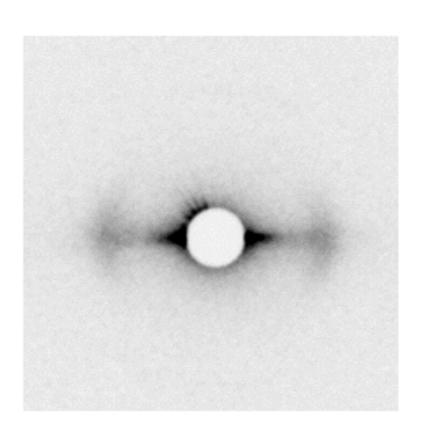
Curly (ROC = 1.5cm)





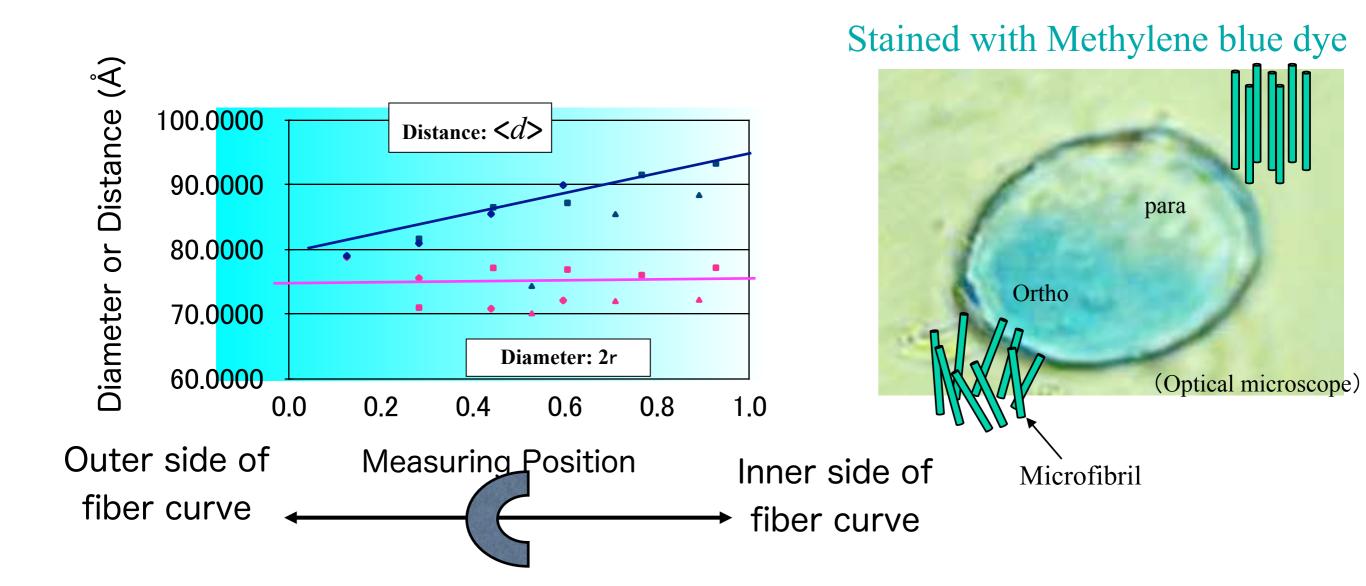
Nearly Straight

(ROC ~ 10cm)



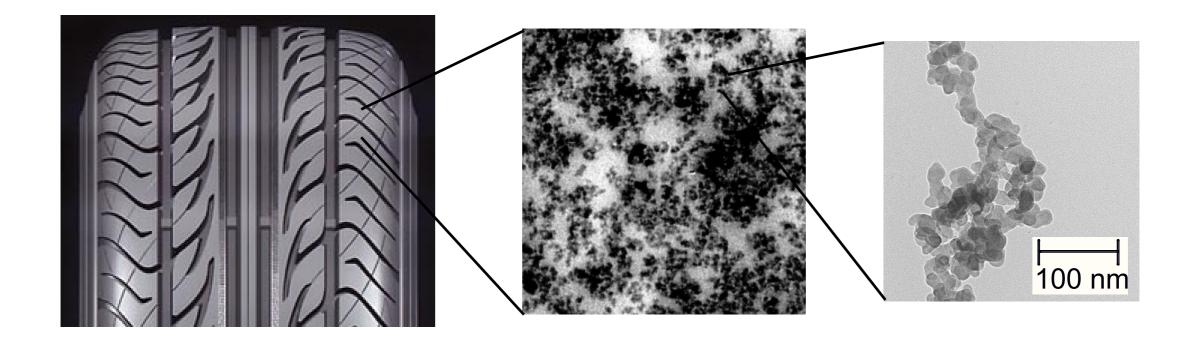
ROC: Radius of Curvature

Distribution of Intermediate Filament (IF)



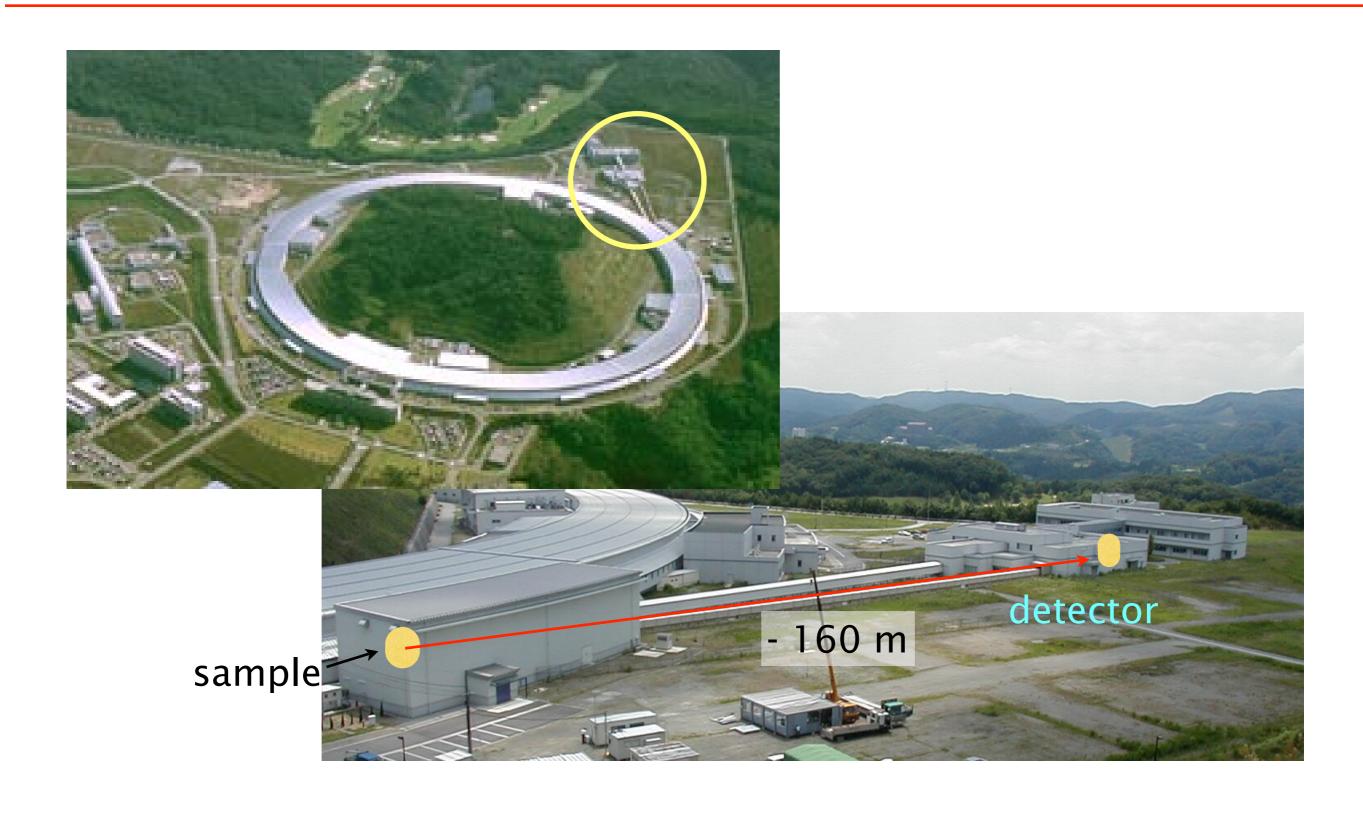
- Diameter of Intermediate filament (IF) is almost constant
- Distance between IFs increases from outer to inner sides.

USAXS for nano-composite in rubber

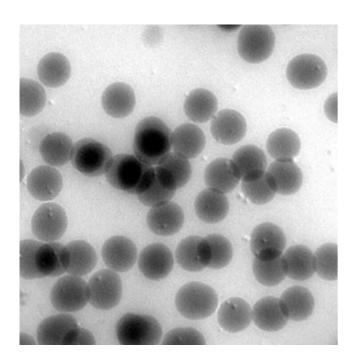


Nanocomposite

USAXS using medium-length beamline

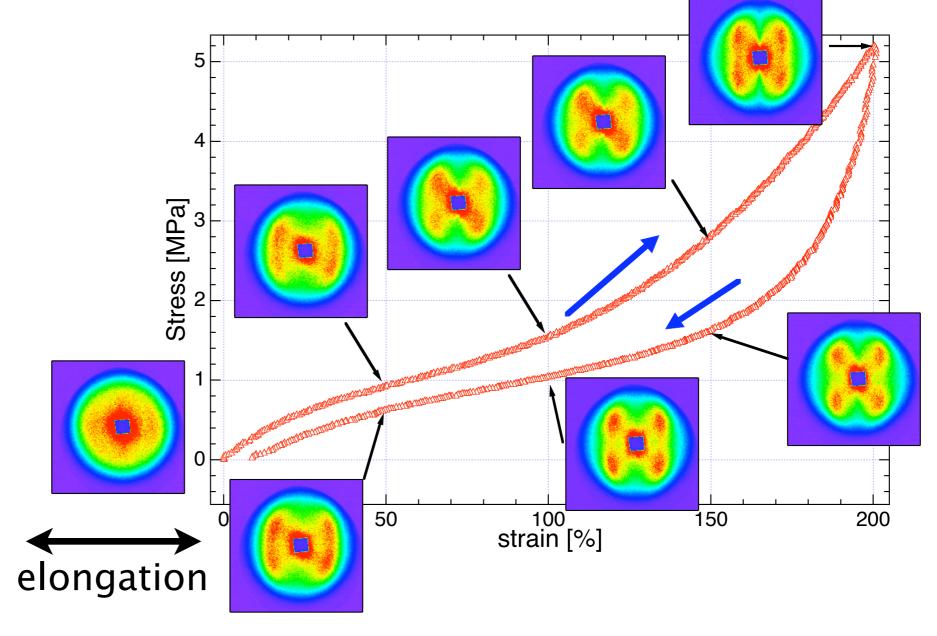


USAXS patterns from elongated rubber



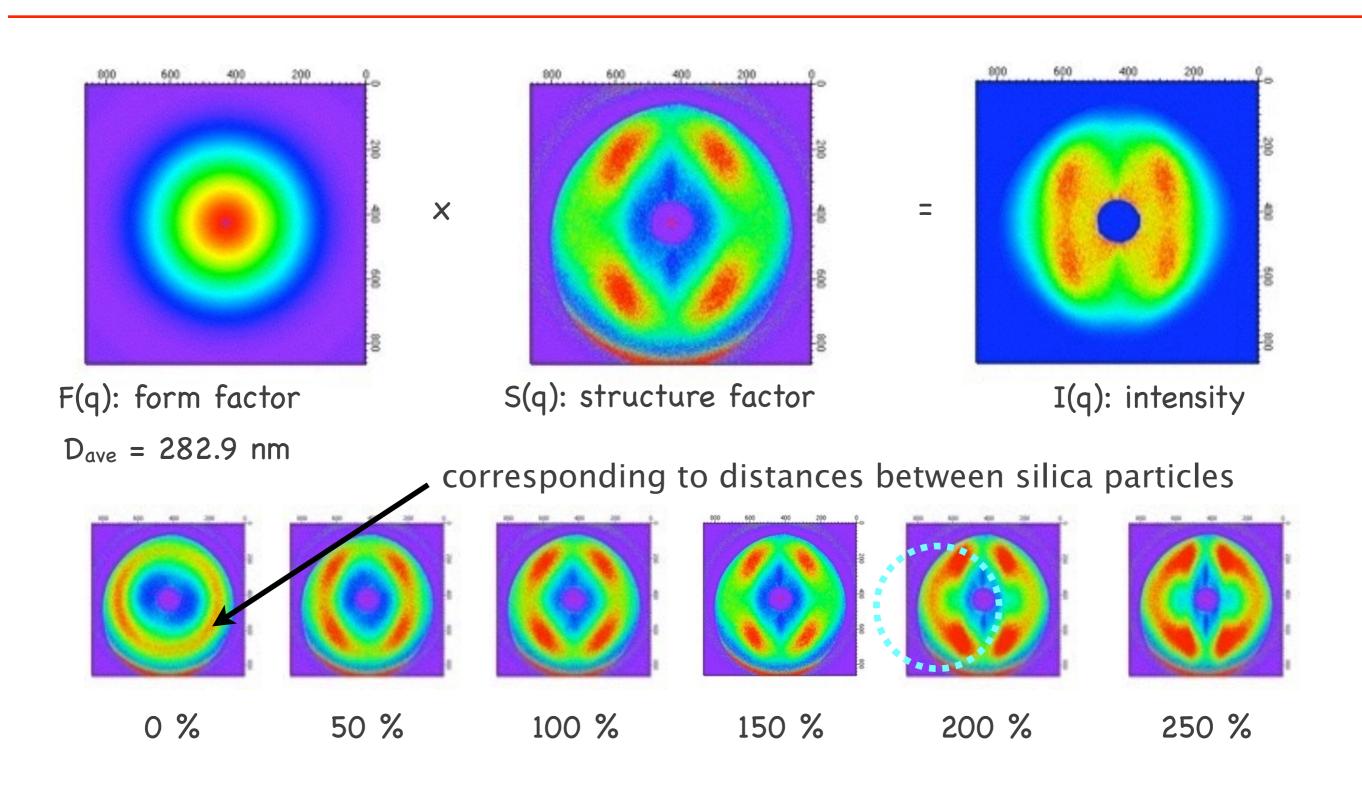
TEM image

Rubber filled with spherical silica



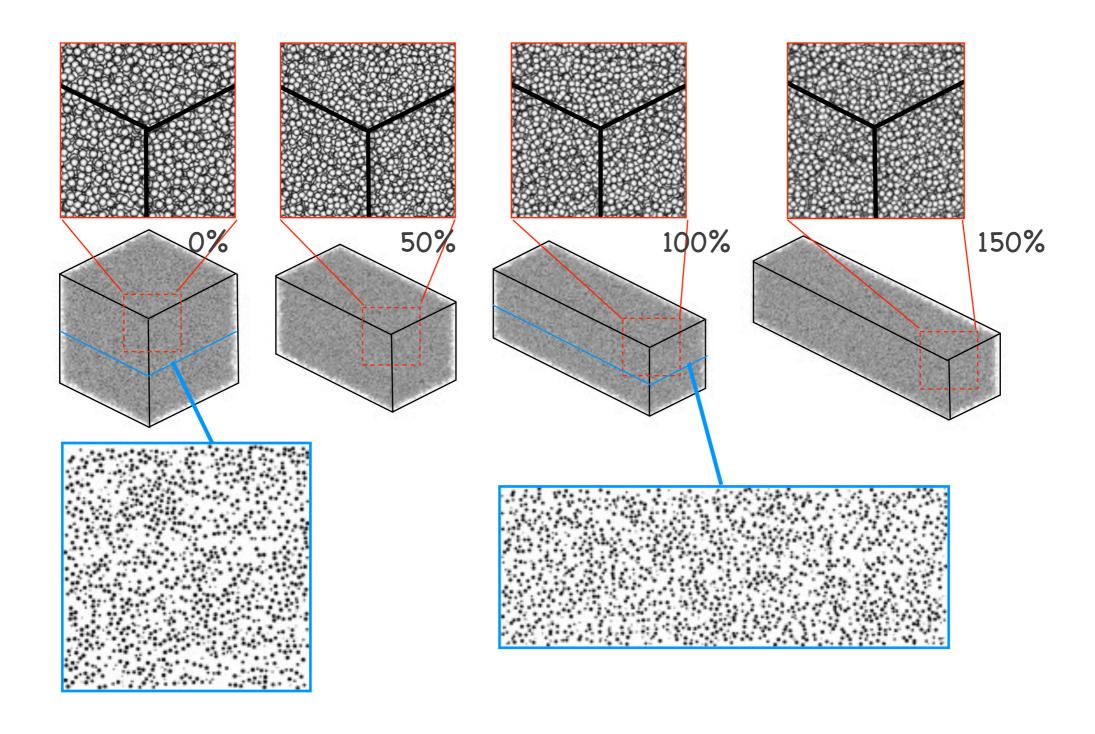
Scattering pattern also shows hysteresis.

Separation of Structure factor S(q)



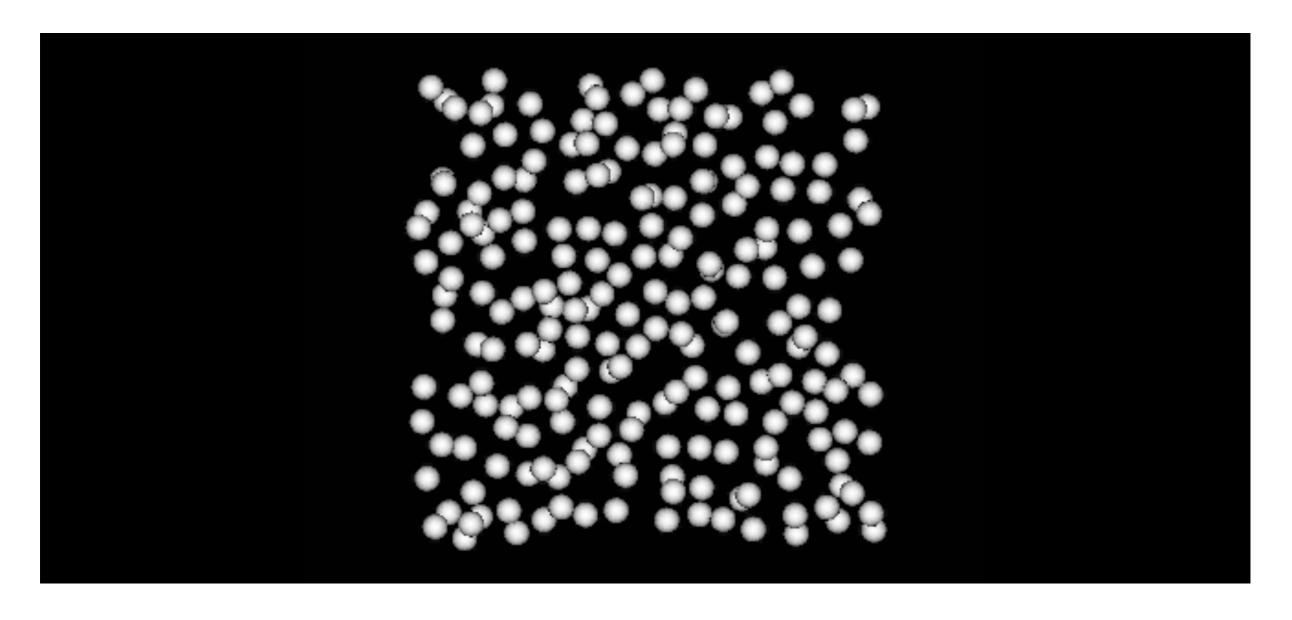
Analysis by RMC (Reverse Monte Carlo)

Sample



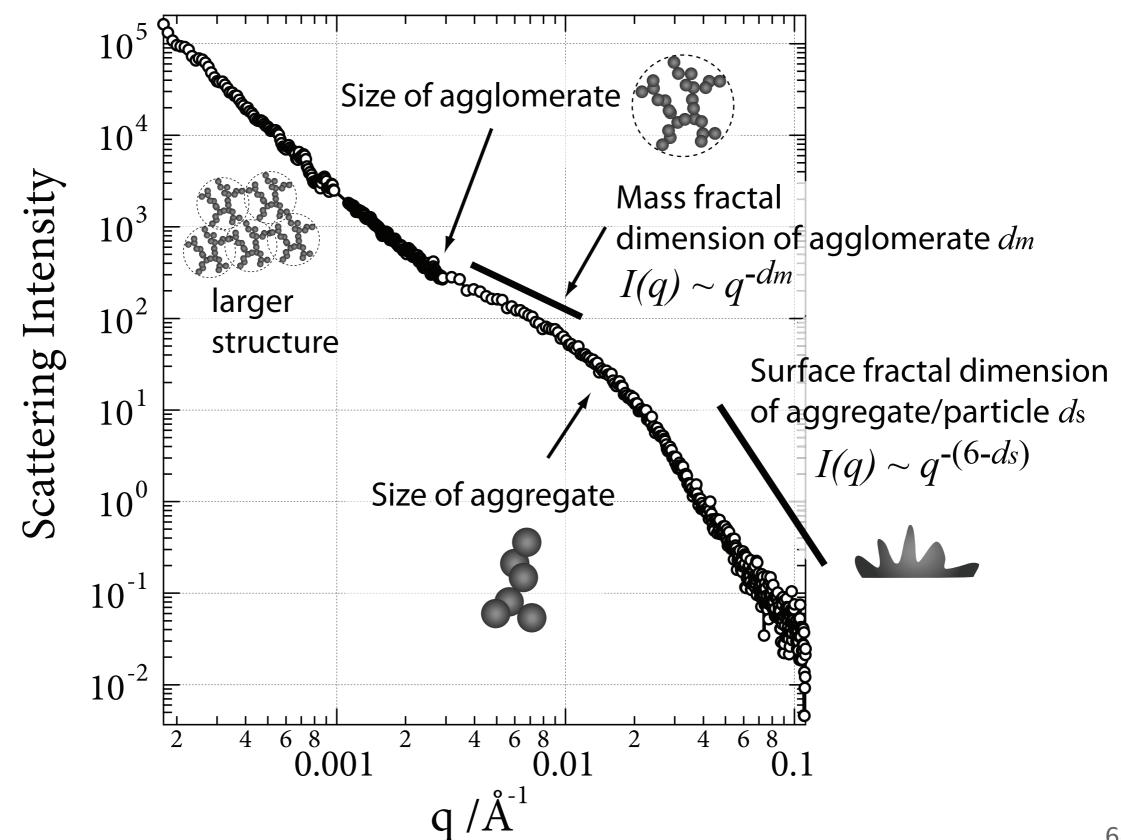
Visualization of structure change of fillers during elongation of rubber by using SAXS and RMC

0→150%: elongation process



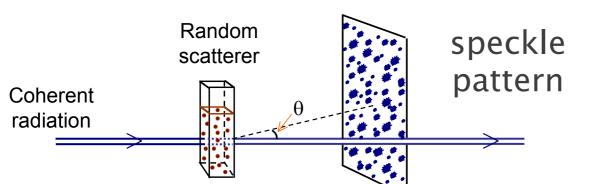
non-uniformity increases along the elongation direction.

Structural information from USAXS



X-ray Photon Correlation Spectroscopy: XPCS

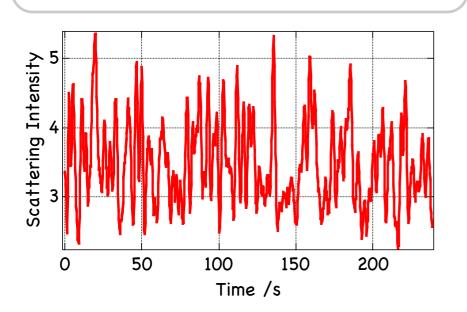
Measurement of fluctuation of X-ray scattering intensity
 Structural fluctuation in sample



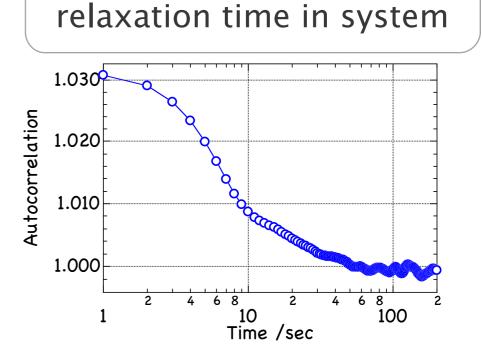
$$g^{(2)}(q, \tau) = \frac{\langle I(q, 0)I^*(q, \tau)\rangle}{\langle I(q)\rangle^2}$$

Time-resolved SAXS with coherent X-ray

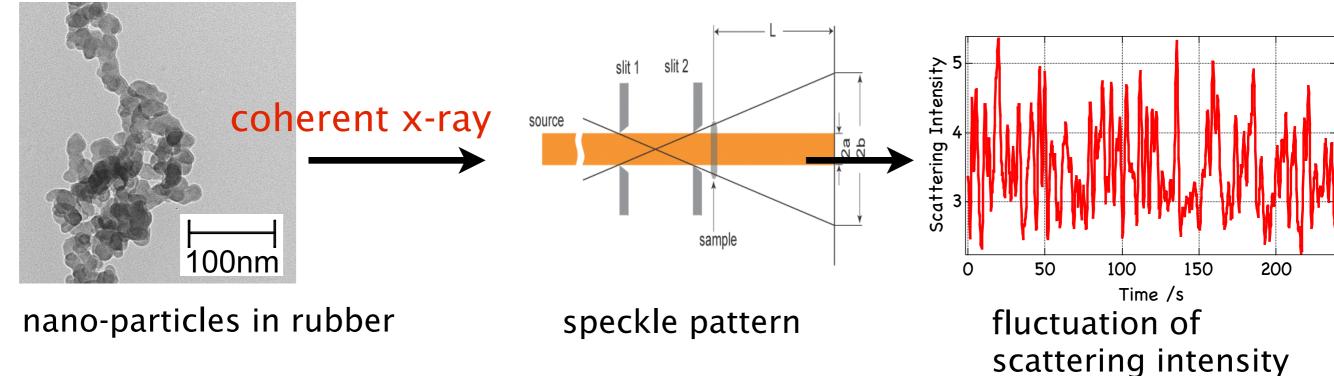
Fluctuation of intensity



Autocorrelation

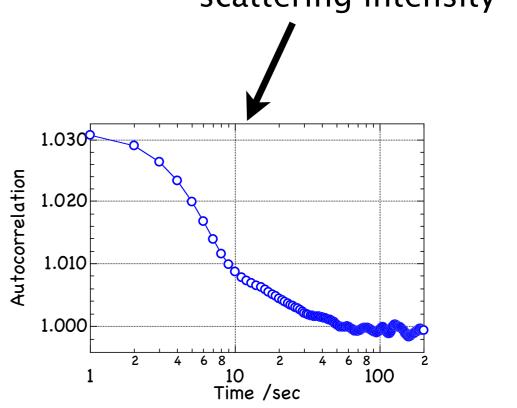


Dynamics of nanoparticles observed with XPCS

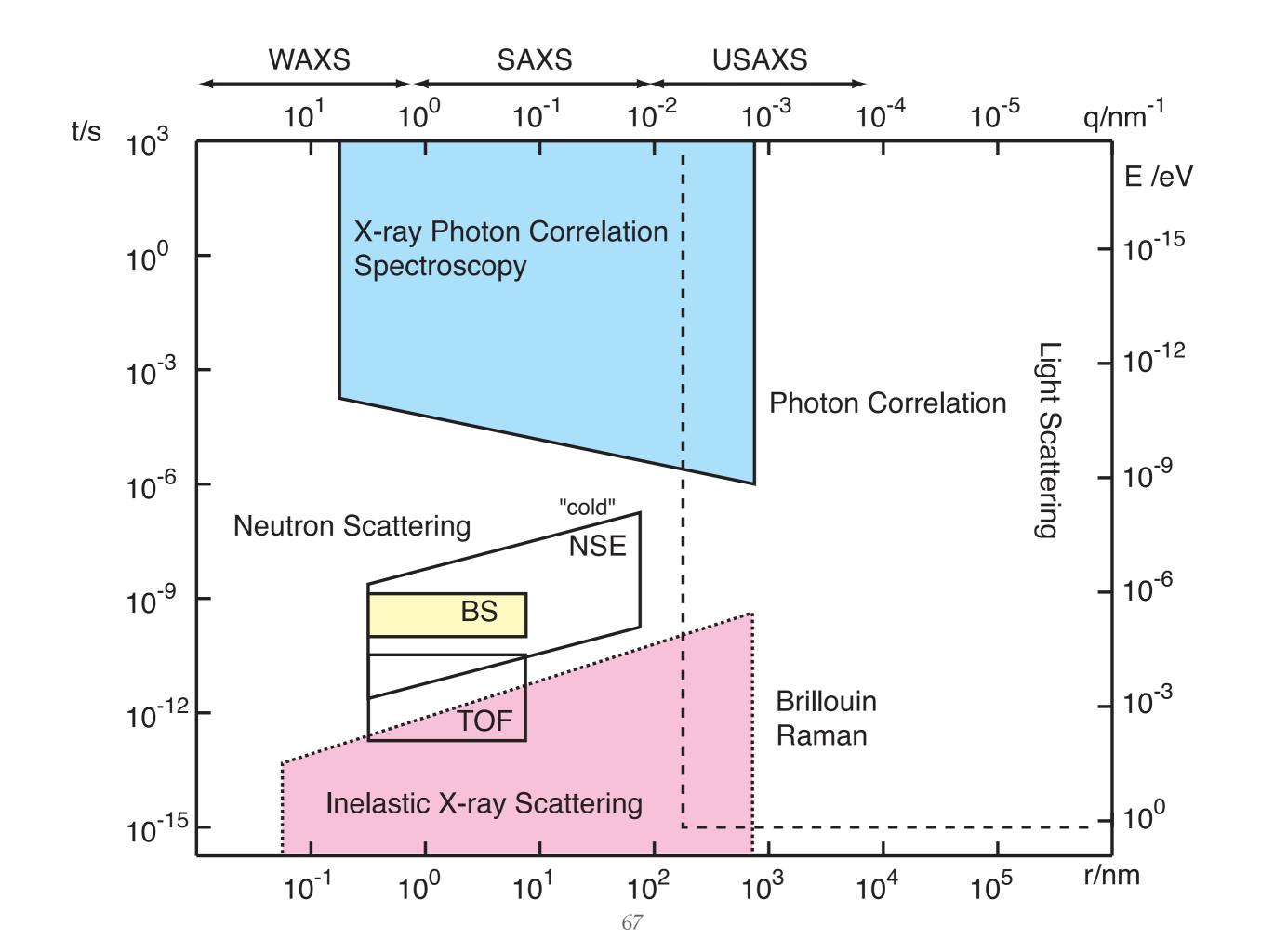


Dependence of dynamics on...

- Volume fraction of nano-particles
- Vulcanization (cross-linking)
- Type of nano-particles
- Temperature etc.



Dynamics of Filler in Rubber



Bibliography

- Sons, New York.
- O. Glatter and O. Kratky ed. (1982) "Small Angle X-ray Scattering" Academic Press, London.
- L. A. Feigin and D. A. Svergun (1987) "Structure Analysis by Small Angle X-ray and Neutron Scattering" Plenum Press.
- P. Lindner and Th. Zemb ed. (2002) "Neutron, X-ray and Light Scattering: Soft Condensed Matter", Elsevier.
- → Proceedings of SAS meeting (2003 & 2006). Published in J. Appl. Cryst.
- R-J. Roe (2000) "Methods of X-ray and Neutron Scattering in Polymer Science", Oxford University Press.